
Fall 2024 - CS 111 - Exam 1 - 2024-10-15 p. 1

Fall 2024 - CS 111 - Exam 1 Reference
NOTE: for all of the exam questions, you are expected to ASSUME the following:

• that you are using DrRacket with a Language level of "Beginning Student" or "Beginning Student with List
Abbreviations".

• that the following expressions are ALREADY in your DrRacket Definitions window and/or .rkt file:

(require 2htdp/image)
(require 2htdp/universe)
(require 2htdp/batch-io)

• that it IS okay to (correctly) use list abbreviation syntax (list) in your answers if you would like.

• that the following comments are already in your DrRacket Definitions window/.rkt file:
; DATA DEFINITION
; a Color is one of:
; - a string containing the name of a color ("red", "blue", etc.), or
; - the result of a make-color expression with a red-value, a green-value,
; and a blue-value, and optionally also a transparency value (each in the interval
; [0, 255])

; DATA DEFINITION
; a NumOrF is one of:
; - number
; - #false

; DATA DEFINITION
; an Anything is an expression of ANY type

; DATA DEFINITION
; a list is one of:
; - empty
; - (cons Anything list) ; cons for CONStruct a list

;==== TEMPLATE for a function that needs
; to "walk through" all of the elements of a
; variable-length list
;
; (define (my-list-funct ... my-list ...)
; (cond
; [(empty? my-list) ...]
; [else
; (... (... (first my-list) ...)
; (my-list-funct ... (rest my-list) ...) ...)]
;)
;)

• Now, for a few examples, signatures, and purpose statements, for reference and exam purposes:
; signature: get-discount: string -> number
; purpose: expects a customer level ("gold", "silver", or "bronze"), and returns the
; appropriate discount rate for a customer at that level

Fall 2024 - CS 111 - Exam 1 - 2024-10-15 p. 1

Fall 2024 - CS 111 - Exam 1 Reference
NOTE: for all of the exam questions, you are expected to ASSUME the following:

• that you are using DrRacket with a Language level of "Beginning Student" or "Beginning Student with List
Abbreviations".

• that the following expressions are ALREADY in your DrRacket Definitions window and/or .rkt file:

(require 2htdp/image)
(require 2htdp/universe)
(require 2htdp/batch-io)

• that it IS okay to (correctly) use list abbreviation syntax (list) in your answers if you would like.

• that the following comments are already in your DrRacket Definitions window/.rkt file:
; DATA DEFINITION
; a Color is one of:
; - a string containing the name of a color ("red", "blue", etc.), or
; - the result of a make-color expression with a red-value, a green-value,
; and a blue-value, and optionally also a transparency value (each in the interval
; [0, 255])

; DATA DEFINITION
; a NumOrF is one of:
; - number
; - #false

; DATA DEFINITION
; an Anything is an expression of ANY type

; DATA DEFINITION
; a list is one of:
; - empty
; - (cons Anything list) ; cons for CONStruct a list

;==== TEMPLATE for a function that needs
; to "walk through" all of the elements of a
; variable-length list
;
; (define (my-list-funct ... my-list ...)
; (cond
; [(empty? my-list) ...]
; [else
; (... (... (first my-list) ...)
; (my-list-funct ... (rest my-list) ...) ...)]
;)
;)

• Now, for a few examples, signatures, and purpose statements, for reference and exam purposes:
; signature: get-discount: string -> number
; purpose: expects a customer level ("gold", "silver", or "bronze"), and returns the
; appropriate discount rate for a customer at that level

Fall 2024 - CS 111 - Exam 1 - 2024-10-15 p. 2

; the following are all #true:

(= 8 (+ 3 5))
(string=? "George" (string-append "Ge" "orge"))
(equal? (circle 30 "outline" "red") (circle (+ 15 15) "outline" "red"))

; signature: string->number: string -> NumOrF
; purpose: expects a string containing digits/numeric characters, and returns the
; equivalent numeric value in that string. If provided with a value whose characters
; cannot be easily converted to a number, it returns #false.

; signature: circle: number string Color -> image
; purpose: expects a radius in pixels, either "solid" or "outline", and a
; color, and returns a circle image with that radius, style, and color

; signature: star: number string Color -> image
; purpose: expects the distance in pixels between points of a desired star image,
; either "solid" or "outline", and a color, and returns a star image
; with that size, style, and color

; signature: square: number string Color -> image
; purpose: expects a side-length in pixels, either "solid" or "outline", and a
; color, and returns a square image with sides of that length, in that style,
; of that color

; signature: rectangle: number number string Color -> image
; purpose: expects a width and height in pixels, "solid" or "outline", and a
; color, and returns a rectangle image with that width, height, style, and
; color

; signature: text: string number Color -> image
; purpose: expects some text, a desired font-size, and a color, and returns
; an image of that text in that font-size and color

; signature: empty-scene: number number -> scene
; purpose: expects a width and a height in pixels, and returns an empty scene
; with those dimensions

; signature: place-image: image number number scene -> scene
; purpose: expects an image, an x coordinate, a y coordinate, and a scene,
; and returns a new scene with that image centered at those
; coordinates in the given scene

• Example of a call to the big-bang function, in a .rkt file that includes definitions for functions
draw-penguin-scene and change-elevation, which have the signatures:

; signature: draw-penguin-scene: number -> scene

; signature: change-elevation: number string -> number

(big-bang 50
 (to-draw draw-penguin-scene)
 (on-tick add1)
 (on-key change-elevation)
 (stop-when zero?))

Fall 2024 - CS 111 - Exam 1 - 2024-10-15 p. 2

; the following are all #true:

(= 8 (+ 3 5))
(string=? "George" (string-append "Ge" "orge"))
(equal? (circle 30 "outline" "red") (circle (+ 15 15) "outline" "red"))

; signature: string->number: string -> NumOrF
; purpose: expects a string containing digits/numeric characters, and returns the
; equivalent numeric value in that string. If provided with a value whose characters
; cannot be easily converted to a number, it returns #false.

; signature: circle: number string Color -> image
; purpose: expects a radius in pixels, either "solid" or "outline", and a
; color, and returns a circle image with that radius, style, and color

; signature: star: number string Color -> image
; purpose: expects the distance in pixels between points of a desired star image,
; either "solid" or "outline", and a color, and returns a star image
; with that size, style, and color

; signature: square: number string Color -> image
; purpose: expects a side-length in pixels, either "solid" or "outline", and a
; color, and returns a square image with sides of that length, in that style,
; of that color

; signature: rectangle: number number string Color -> image
; purpose: expects a width and height in pixels, "solid" or "outline", and a
; color, and returns a rectangle image with that width, height, style, and
; color

; signature: text: string number Color -> image
; purpose: expects some text, a desired font-size, and a color, and returns
; an image of that text in that font-size and color

; signature: empty-scene: number number -> scene
; purpose: expects a width and a height in pixels, and returns an empty scene
; with those dimensions

; signature: place-image: image number number scene -> scene
; purpose: expects an image, an x coordinate, a y coordinate, and a scene,
; and returns a new scene with that image centered at those
; coordinates in the given scene

• Example of a call to the big-bang function, in a .rkt file that includes definitions for functions
draw-penguin-scene and change-elevation, which have the signatures:

; signature: draw-penguin-scene: number -> scene

; signature: change-elevation: number string -> number

(big-bang 50
 (to-draw draw-penguin-scene)
 (on-tick add1)
 (on-key change-elevation)
 (stop-when zero?))

