
CS 111 - Final Exam Review Suggestions p. 1 of 6

CS 111 - Final Exam Review Suggestions - Fall 2024
last modified: 2024-12-11

Final Exam BONUS Opportunity
• You can receive (a maximum) *5 POINTS BONUS* on the Final Exam if you do the following:

– Make a hand-written Final Exam study sheet (a single sheet of paper, no larger than 8.5" by 11",
on which you have hand-written as much as you would like on one or both sides)

– Submit a photo or scan of it saved as a .pdf, .png, .jpg, or .tiff to Canvas by 8:00 am on
Tuesday, December 17 such that I can read at least some significant CS 111 post-Exam-2 material
on it.

– You are encouraged to have this with you at as you are taking the Final Exam.

– NOTE: if this is typed rather than handwritten, you will not receive bonus credit, and you will not
be allowed to use it during the Final Exam.

– Please let me know if you have any questions about this, and I hope it helps you in reviewing course
concepts more effectively before the Final Exam.

Final Exam Set-up

• You will take the Final Exam in GH 218 at 8:00 am on Tuesday, December 17.

– You are expected to work individually on the exam -- it is not acceptable during the exam to
discuss anything on the exam with anyone else.

– You may have your Final Exam study sheet and also your Exam 1 and Exam 2 handwritten one-
page study sheets on hand during the exam. Otherwise, the exam is closed-note, closed-book, and
closed-computer/closed-electronic-devices.

• The Final Exam is cumulative in CONCEPTS,

but the LANGUAGE of the exam will be C++, to reduce cross-syntax confusion.

You will not be writing any Racket for the Final Exam.

– So, you should still use the review suggestions for Exam 1 and Exam 2 for studying for the final
exam, but substitute C++ for Racket in the Exam 1-related material.

– Note that these are still available on the public course web site, under "Homeworks and
Handouts"

• I expect there will be some multiple-choice questions, and the rest will be short- to medium-answer
questions.

– You will be reading and writing C++ expressions, including C++ function and named constant
definitions.

– You will be answering questions about concepts as well.

CS 111 - Final Exam Review Suggestions p. 1 of 6

CS 111 - Final Exam Review Suggestions - Fall 2024
last modified: 2024-12-11

Final Exam BONUS Opportunity
• You can receive (a maximum) *5 POINTS BONUS* on the Final Exam if you do the following:

– Make a hand-written Final Exam study sheet (a single sheet of paper, no larger than 8.5" by 11",
on which you have hand-written as much as you would like on one or both sides)

– Submit a photo or scan of it saved as a .pdf, .png, .jpg, or .tiff to Canvas by 8:00 am on
Tuesday, December 17 such that I can read at least some significant CS 111 post-Exam-2 material
on it.

– You are encouraged to have this with you at as you are taking the Final Exam.

– NOTE: if this is typed rather than handwritten, you will not receive bonus credit, and you will not
be allowed to use it during the Final Exam.

– Please let me know if you have any questions about this, and I hope it helps you in reviewing course
concepts more effectively before the Final Exam.

Final Exam Set-up

• You will take the Final Exam in GH 218 at 8:00 am on Tuesday, December 17.

– You are expected to work individually on the exam -- it is not acceptable during the exam to
discuss anything on the exam with anyone else.

– You may have your Final Exam study sheet and also your Exam 1 and Exam 2 handwritten one-
page study sheets on hand during the exam. Otherwise, the exam is closed-note, closed-book, and
closed-computer/closed-electronic-devices.

• The Final Exam is cumulative in CONCEPTS,

but the LANGUAGE of the exam will be C++, to reduce cross-syntax confusion.

You will not be writing any Racket for the Final Exam.

– So, you should still use the review suggestions for Exam 1 and Exam 2 for studying for the final
exam, but substitute C++ for Racket in the Exam 1-related material.

– Note that these are still available on the public course web site, under "Homeworks and
Handouts"

• I expect there will be some multiple-choice questions, and the rest will be short- to medium-answer
questions.

– You will be reading and writing C++ expressions, including C++ function and named constant
definitions.

– You will be answering questions about concepts as well.

CS 111 - Final Exam Review Suggestions p. 2 of 6

• A reference page will be given out with the Final Exam (in addition to your optional handwritten page
of notes); this is intended both for reference and for use directly in some exam questions.

– This will include a copy of the posted 111template.cpp.

– I believe that the ability to use such a reference effectively is an important skill.

• Your studying should include careful study of posted examples and notes.

• You are responsible for material covered in class sessions, lab exercises, and homeworks.

– This review handout is a quick overview of especially important material since Exam 2.

– TIP: It is perfectly fine to retake/read over the short-answer questions in Canvas from course
Homeworks as you are studying for the Final Exam!

These are set up for unlimited retakes, and only keep the highest score, so you will not hurt your
grade by doing so!

• Remember that C++ is case sensitive - for example, String is not the same data type as string.
You are expected to use the correct case in your answers.

• You are also expected to follow CS 111 course style guidelines and coding standards in your answers
(including indentation).

• You should be comfortable with the design recipe for functions, and should be able to write an opening
comment block for a function including its signature, purpose statement, and tests.

– You now know, in a function's purpose, to also describe any side-effects it has ("has the side-
effects of...") in addition to describing what it expects ("expects ...") and what it returns ("returns...)

• Note that answers may lose points if they show a lack of precision in terminology or syntax.

– For example, if I ask for a literal or an expression and you give an entire statement, instead, you will
lose some credit;

– or, if just an expression is asked for, and you put a semicolon at the expression's end;

– or, if a statement is requested that requires a semicolon, and it is not ended with one;

– or, if you are asked for a specific code fragment, and you give an entire function.

• Final exams are not returned, although they will be kept on file for at least 2 years, and you are
welcome to come by my office to look over your graded exam once it has been graded.

C++ switch statement
• Need to be comfortable reading and writing C++ switch statements

– What are the differences between an if statement and a switch statement?

– When is a switch statement appropriate?

• What are the types permitted for the switch statement's expression?

– Know how to use break; statements within a switch statement; know what they do, and what
can happen (depending on the statements involved) if you leave them out.

CS 111 - Final Exam Review Suggestions p. 2 of 6

• A reference page will be given out with the Final Exam (in addition to your optional handwritten page
of notes); this is intended both for reference and for use directly in some exam questions.

– This will include a copy of the posted 111template.cpp.

– I believe that the ability to use such a reference effectively is an important skill.

• Your studying should include careful study of posted examples and notes.

• You are responsible for material covered in class sessions, lab exercises, and homeworks.

– This review handout is a quick overview of especially important material since Exam 2.

– TIP: It is perfectly fine to retake/read over the short-answer questions in Canvas from course
Homeworks as you are studying for the Final Exam!

These are set up for unlimited retakes, and only keep the highest score, so you will not hurt your
grade by doing so!

• Remember that C++ is case sensitive - for example, String is not the same data type as string.
You are expected to use the correct case in your answers.

• You are also expected to follow CS 111 course style guidelines and coding standards in your answers
(including indentation).

• You should be comfortable with the design recipe for functions, and should be able to write an opening
comment block for a function including its signature, purpose statement, and tests.

– You now know, in a function's purpose, to also describe any side-effects it has ("has the side-
effects of...") in addition to describing what it expects ("expects ...") and what it returns ("returns...)

• Note that answers may lose points if they show a lack of precision in terminology or syntax.

– For example, if I ask for a literal or an expression and you give an entire statement, instead, you will
lose some credit;

– or, if just an expression is asked for, and you put a semicolon at the expression's end;

– or, if a statement is requested that requires a semicolon, and it is not ended with one;

– or, if you are asked for a specific code fragment, and you give an entire function.

• Final exams are not returned, although they will be kept on file for at least 2 years, and you are
welcome to come by my office to look over your graded exam once it has been graded.

C++ switch statement
• Need to be comfortable reading and writing C++ switch statements

– What are the differences between an if statement and a switch statement?

– When is a switch statement appropriate?

• What are the types permitted for the switch statement's expression?

– Know how to use break; statements within a switch statement; know what they do, and what
can happen (depending on the statements involved) if you leave them out.

CS 111 - Final Exam Review Suggestions p. 3 of 6

• You should be able to write these using the course-required indentation.

Example of a side-effect: screen output (cout), continued
• You should be more experienced with this based on your programming since Exam 2.

• Should be able to read and write code that has side-effects such as simple screen output; should be
comfortable with the object cout provided by the C++ stream input/output standard library,
iostream

• How can you print the value of an expression to the screen? How can you make sure it is on its own
line (is followed by a newline character)?

• How can you print a blank within your printed output?

• Be prepared to give the precise output of fragments of C++ code; you should be comfortable knowing
how cout will "behave" with endl, boolalpha, literals, and other expressions.

– NOTE that including extra newlines, blank lines, spaces, quotes, etc. will NOT be counted as
correct for such output.

"Complete" C++ programs
• For Exam 2, you should have been able to use the posted 111template.cpp (which will be

included in the Final Exam Reference page as well) to write a "testing" main function that meets the
class style standards for testing a non-main function.

– For the Final Exam, you also should be able to write a main function that is not just for testing --
for example, a main to serve as an interactive "front end" for a non-main function or functions.

• You should be able to read a main function; you should be able to tell, from a collection of functions
making up a program, what that program would do when it is run.

Local variables, mutation, and assignment statements
• What is a local variable? How do you declare a local variable in C++? How can you assign to it? (Right

now, you know at least three ways to assign to it.)

• What is the difference between = and ==?

– If you have int i; and i has been set to some value, what does i = i + 1; do?

• Should be able to read a fragment of code and answer questions about it; should be able to say what the
value of a variable is at any point within that fragment.

• For Exam 1, you should have understood that a parameter is assigned the value of its argument's
expression when a function is called;

...for the Final Exam, now you should also be comfortable with using an assignment statement to
change the value of a local variable. You should also be able to use cin to change the value of a local
variable, and to use getline to change the value of a local string variable.

CS 111 - Final Exam Review Suggestions p. 3 of 6

• You should be able to write these using the course-required indentation.

Example of a side-effect: screen output (cout), continued
• You should be more experienced with this based on your programming since Exam 2.

• Should be able to read and write code that has side-effects such as simple screen output; should be
comfortable with the object cout provided by the C++ stream input/output standard library,
iostream

• How can you print the value of an expression to the screen? How can you make sure it is on its own
line (is followed by a newline character)?

• How can you print a blank within your printed output?

• Be prepared to give the precise output of fragments of C++ code; you should be comfortable knowing
how cout will "behave" with endl, boolalpha, literals, and other expressions.

– NOTE that including extra newlines, blank lines, spaces, quotes, etc. will NOT be counted as
correct for such output.

"Complete" C++ programs
• For Exam 2, you should have been able to use the posted 111template.cpp (which will be

included in the Final Exam Reference page as well) to write a "testing" main function that meets the
class style standards for testing a non-main function.

– For the Final Exam, you also should be able to write a main function that is not just for testing --
for example, a main to serve as an interactive "front end" for a non-main function or functions.

• You should be able to read a main function; you should be able to tell, from a collection of functions
making up a program, what that program would do when it is run.

Local variables, mutation, and assignment statements
• What is a local variable? How do you declare a local variable in C++? How can you assign to it? (Right

now, you know at least three ways to assign to it.)

• What is the difference between = and ==?

– If you have int i; and i has been set to some value, what does i = i + 1; do?

• Should be able to read a fragment of code and answer questions about it; should be able to say what the
value of a variable is at any point within that fragment.

• For Exam 1, you should have understood that a parameter is assigned the value of its argument's
expression when a function is called;

...for the Final Exam, now you should also be comfortable with using an assignment statement to
change the value of a local variable. You should also be able to use cin to change the value of a local
variable, and to use getline to change the value of a local string variable.

CS 111 - Final Exam Review Suggestions p. 4 of 6

C++ while statement/while loop
• Need to be comfortable with the basics of the C++ while statement/loop; need to be comfortable with

its syntax and semantics, need to understand how it uses mutation of a local variable to implement
repetition.

– Should be able to read a fragment of C++ code including a while loop, and be able to tell what it
is doing; you should be able to answer questions about what a while loop does when it executes.

– Should be able to write a basic while loop.

– Should know the course-expected indentation for while loops.

• Should be able to read, write a count-controlled loop (using a while loop), a loop that does something
a certain number of times.

• Should also be able to read a more-general while loop (that does something repeatedly, although not
necessarily a known-in-advance number of times).

• We just introduced the C++ "classic" for loop, so you will not be required to write one on the Final
Exam. BUT you should know that a for loop is a good choice for a count-controlled loop,

(...and NOT a good choice for a loop NOT controlled by some kind of count variable!).

– That is, know that while loops are better for "other" kinds of loops, especially those controlled by
something other than a counter (for example, they might be controlled by a user's answer, or by
some event happening).

– If an exam question asks you to write a count-controlled loop and does not specify that it must use a
while statement, then you may choose to write that using either a while or a for statement.

• Should be very comfortable with the course-expected indentation for while loops.

• You should be able to design, read, and write while loops; you should be able to read a while loop,
and tell what it is doing; you should be able to answer questions about what a while loop does when it
executes.

Using operator >> and function getline with cin for interactive
input

• You should be comfortable using cin for interactive input, both with its >> operator and as an
argument to the getline function.
cin >> desired_local_variable;

getline(cin, desired_local_string_variable);

• You should be able to use the getline function with cin to read in a line at of input from the user.

– (but remember, you CANNOT use getline for double, int, bool, or char data)

– (and be aware that, if mixing reads using getline with reads using the >> operator, you MAY
need to use an extra getline call to "finish" the preceding line before going on.)

• You should be able to write a main function that uses cin (with either >> or getline) to serve as an
"interactive front end" for a non-main function.

CS 111 - Final Exam Review Suggestions p. 4 of 6

C++ while statement/while loop
• Need to be comfortable with the basics of the C++ while statement/loop; need to be comfortable with

its syntax and semantics, need to understand how it uses mutation of a local variable to implement
repetition.

– Should be able to read a fragment of C++ code including a while loop, and be able to tell what it
is doing; you should be able to answer questions about what a while loop does when it executes.

– Should be able to write a basic while loop.

– Should know the course-expected indentation for while loops.

• Should be able to read, write a count-controlled loop (using a while loop), a loop that does something
a certain number of times.

• Should also be able to read a more-general while loop (that does something repeatedly, although not
necessarily a known-in-advance number of times).

• We just introduced the C++ "classic" for loop, so you will not be required to write one on the Final
Exam. BUT you should know that a for loop is a good choice for a count-controlled loop,

(...and NOT a good choice for a loop NOT controlled by some kind of count variable!).

– That is, know that while loops are better for "other" kinds of loops, especially those controlled by
something other than a counter (for example, they might be controlled by a user's answer, or by
some event happening).

– If an exam question asks you to write a count-controlled loop and does not specify that it must use a
while statement, then you may choose to write that using either a while or a for statement.

• Should be very comfortable with the course-expected indentation for while loops.

• You should be able to design, read, and write while loops; you should be able to read a while loop,
and tell what it is doing; you should be able to answer questions about what a while loop does when it
executes.

Using operator >> and function getline with cin for interactive
input

• You should be comfortable using cin for interactive input, both with its >> operator and as an
argument to the getline function.
cin >> desired_local_variable;

getline(cin, desired_local_string_variable);

• You should be able to use the getline function with cin to read in a line at of input from the user.

– (but remember, you CANNOT use getline for double, int, bool, or char data)

– (and be aware that, if mixing reads using getline with reads using the >> operator, you MAY
need to use an extra getline call to "finish" the preceding line before going on.)

• You should be able to write a main function that uses cin (with either >> or getline) to serve as an
"interactive front end" for a non-main function.

CS 111 - Final Exam Review Suggestions p. 5 of 6

– (But you should also be aware that any function can happen to use either of these to have a side-
effect of interactive input, in addition to what that function expects and returns.)

C++ 1-dimensional arrays
• Need to be comfortable with the basics of C++ 1-dimensional arrays.

• How do you declare an array? How can you initialize it?

– Given an array's declaration, you should be able to say what its indices will be.

• How do you access an individual element/an individual cell within an array?

– Given an array's declaration, you should be able to write expressions representing individual
elements/cells within that array.

• How can you do something to every element/every cell within an array? How can you use every
element/every cell within an array?

– You should be able to write a a count-controlled loop that does something to or with every element
within an array.

• Expect to have to read, write, and use arrays; you should be comfortable with array-related syntax and
semantics, and with common "patterns" for using arrays.

• How can you write a function with an array parameter?

– In C++, what is usually also included as one of the parameters when a function has an array
parameter?

– How do you indicate an array parameter in a function signature comment?

– How do you declare an array parameter in a function header?

– How do you call a function with an array argument?

• EXPECT IT: you will have to write at least one loop that does something involving every element in an
array.

Different kinds of C++ functions
• at this point, you have written "pure" functions that expect parameters and return a result;

you have also seen C++ main functions, as well as auxiliary functions that are not so "pure" (they may
have side-effects, etc.!)

• You should know the difference between a function returning something and a function printing
something to the screen or to a file; you should be able to write functions that can do either or both,
depending on what is specified.

• Given a function header, you should know how to then write a "legal" call to that function;

– When a function returns a value, how is it (typically) called? How can it also be called if you just
care about its side-effects, and not about what it happens to return?

– When a function expects one or more parameters, how is it called?

CS 111 - Final Exam Review Suggestions p. 5 of 6

– (But you should also be aware that any function can happen to use either of these to have a side-
effect of interactive input, in addition to what that function expects and returns.)

C++ 1-dimensional arrays
• Need to be comfortable with the basics of C++ 1-dimensional arrays.

• How do you declare an array? How can you initialize it?

– Given an array's declaration, you should be able to say what its indices will be.

• How do you access an individual element/an individual cell within an array?

– Given an array's declaration, you should be able to write expressions representing individual
elements/cells within that array.

• How can you do something to every element/every cell within an array? How can you use every
element/every cell within an array?

– You should be able to write a a count-controlled loop that does something to or with every element
within an array.

• Expect to have to read, write, and use arrays; you should be comfortable with array-related syntax and
semantics, and with common "patterns" for using arrays.

• How can you write a function with an array parameter?

– In C++, what is usually also included as one of the parameters when a function has an array
parameter?

– How do you indicate an array parameter in a function signature comment?

– How do you declare an array parameter in a function header?

– How do you call a function with an array argument?

• EXPECT IT: you will have to write at least one loop that does something involving every element in an
array.

Different kinds of C++ functions
• at this point, you have written "pure" functions that expect parameters and return a result;

you have also seen C++ main functions, as well as auxiliary functions that are not so "pure" (they may
have side-effects, etc.!)

• You should know the difference between a function returning something and a function printing
something to the screen or to a file; you should be able to write functions that can do either or both,
depending on what is specified.

• Given a function header, you should know how to then write a "legal" call to that function;

– When a function returns a value, how is it (typically) called? How can it also be called if you just
care about its side-effects, and not about what it happens to return?

– When a function expects one or more parameters, how is it called?

CS 111 - Final Exam Review Suggestions p. 6 of 6

– EXPECT IT: you WILL be given a function header, and be asked to write a "legal" call to that
function.

• You should know what happens when:

– ...you call a function (especially one that has side-effects) by itself as a statement:

cheer(13);

– ...you call a function that returns something within a cout statement:

cout << cheer(13) << endl;

– ...you call a function that returns something on the right-hand-side of an assignment statement:

int looky;
looky = cheer(13);

Preprocessor directives
• what does #include do? Where should you put it? When is it done/"handled"?

• how do you #include a standard library (what needs to surround its name)? For this class, what line
should follow all of your #includes? (using namespace std;)

File input/output
• why might you want a program to be able to read from a file? why might you want a program to write

to a file?

• what C++ standard library is used for the file input/output that we used? What #include, then, do
you need to include in each .cpp file containing a function body that does file input or file output?

• how do you set up and open a file for reading? how do you set up and open a file for writing?

– ...and how do you close such a file stream when you are done?

• once you have opened an input file stream, how can you read something from it?

• once you have opened an output file stream, how can you write something to it?

– know that opening an output file stream for a given name creates a new file with that name if such a
file does not currently exist, and deletes its current contents if it does currently exist.

• be comfortable with the getline function for reading in a line at a time from a given input stream

– (and be aware that, if mixing reads using getline with reads using the >> operator, you MAY
need to use an extra getline call to "finish" the preceding line before going on)

also note...
• EXPECT a question giving you function headers & asking you to write calls of those functions.

• EXPECT a question asking you to write a count-controlled loop to do something a set number of times.

CS 111 - Final Exam Review Suggestions p. 6 of 6

– EXPECT IT: you WILL be given a function header, and be asked to write a "legal" call to that
function.

• You should know what happens when:

– ...you call a function (especially one that has side-effects) by itself as a statement:

cheer(13);

– ...you call a function that returns something within a cout statement:

cout << cheer(13) << endl;

– ...you call a function that returns something on the right-hand-side of an assignment statement:

int looky;
looky = cheer(13);

Preprocessor directives
• what does #include do? Where should you put it? When is it done/"handled"?

• how do you #include a standard library (what needs to surround its name)? For this class, what line
should follow all of your #includes? (using namespace std;)

File input/output
• why might you want a program to be able to read from a file? why might you want a program to write

to a file?

• what C++ standard library is used for the file input/output that we used? What #include, then, do
you need to include in each .cpp file containing a function body that does file input or file output?

• how do you set up and open a file for reading? how do you set up and open a file for writing?

– ...and how do you close such a file stream when you are done?

• once you have opened an input file stream, how can you read something from it?

• once you have opened an output file stream, how can you write something to it?

– know that opening an output file stream for a given name creates a new file with that name if such a
file does not currently exist, and deletes its current contents if it does currently exist.

• be comfortable with the getline function for reading in a line at a time from a given input stream

– (and be aware that, if mixing reads using getline with reads using the >> operator, you MAY
need to use an extra getline call to "finish" the preceding line before going on)

also note...
• EXPECT a question giving you function headers & asking you to write calls of those functions.

• EXPECT a question asking you to write a count-controlled loop to do something a set number of times.

	Final Exam BONUS Opportunity
	Final Exam Set-up
	C++ switch statement
	Example of a side-effect: screen output (cout), continued
	"Complete" C++ programs
	Local variables, mutation, and assignment statements
	C++ while statement/while loop
	Using operator >> and function getline with cin for interactive input
	C++ 1-dimensional arrays
	Different kinds of C++ functions
	Preprocessor directives
	File input/output
	also note...

