
CS 111 - Homework 6 p. 1 of 6

CS 111 - Homework 6
Deadline
11:59 pm on Friday, October 11, 2024

Purpose
To provide a bit more practice with file input and output and with lists (including using the design recipe to
write functions that "walk through" a list).

How to submit
Submit your 111hw6.rkt file and also any .txt files you create for testing your functions for these
problems on the course Canvas site. (Remember, submit early and often!)

(I think it is OK if you do not submit copies of .txt files that your 111hw6.rkt creates -- we should
"get" copies of those when we run your 111hw6.rkt.)

Important notes
• Please note that only SOME, not all, of this homework's problems involve lists, and only SOME, not all,

involve file input and/or file output.

• Remember that for functions involving lists whose lengths might vary -- as well as for functions involving
itemization-style data -- you need to include at least one test for each item in its itemized data definition
(and sometimes more, depending on the particular function's purpose)

– So, given the Data Definition for a list, IF your function can accept a list of any size, make sure one of
your tests has an empty list as its argument!

– (You do NOT need a test for an empty list if that function expects a fixed-size list, however.)

• Remember that a scanned copy of the "graphic design recipe helper" is posted on the public course web
site, at the end of the "References" section, if you would like a reminder of the steps you are required to
follow in developing your functions.

• NOTE: it is usually fine and often encouraged if you would like to write one or more helper functions to
help you write a homework problem's required functions.

– HOWEVER -- whenever you do so, EACH function you define IS EXPECTED TO follow ALL of
the design recipe steps!

• NOTE: it is also fine and encouraged to define and use named constants when you notice there is some
"set" value you are reusing!

• Signature and purpose statement comments are ONLY required for functions that you have written and
defined yourself – you do not write them for named constants, or for functions that are already built into
the Racket environment or provided modules.

– That said, if you copy one of the in-class functions for use in your homework, DO also copy its
signature, purpose, and check- expressions/tests as well as the function definition.

• The design recipe is important! You will receive substantial credit for the signature, purpose, header,
and examples/check-expects portions of your functions. Typically you'll get at least half-credit for a correct
signature, purpose, header, and examples/check-expects, even if your function body is not correct (and,
you'll typically lose at least half-credit if you omit these or do them poorly, even if your function body is

CS 111 - Homework 6 p. 1 of 6

CS 111 - Homework 6
Deadline
11:59 pm on Friday, October 11, 2024

Purpose
To provide a bit more practice with file input and output and with lists (including using the design recipe to
write functions that "walk through" a list).

How to submit
Submit your 111hw6.rkt file and also any .txt files you create for testing your functions for these
problems on the course Canvas site. (Remember, submit early and often!)

(I think it is OK if you do not submit copies of .txt files that your 111hw6.rkt creates -- we should
"get" copies of those when we run your 111hw6.rkt.)

Important notes
• Please note that only SOME, not all, of this homework's problems involve lists, and only SOME, not all,

involve file input and/or file output.

• Remember that for functions involving lists whose lengths might vary -- as well as for functions involving
itemization-style data -- you need to include at least one test for each item in its itemized data definition
(and sometimes more, depending on the particular function's purpose)

– So, given the Data Definition for a list, IF your function can accept a list of any size, make sure one of
your tests has an empty list as its argument!

– (You do NOT need a test for an empty list if that function expects a fixed-size list, however.)

• Remember that a scanned copy of the "graphic design recipe helper" is posted on the public course web
site, at the end of the "References" section, if you would like a reminder of the steps you are required to
follow in developing your functions.

• NOTE: it is usually fine and often encouraged if you would like to write one or more helper functions to
help you write a homework problem's required functions.

– HOWEVER -- whenever you do so, EACH function you define IS EXPECTED TO follow ALL of
the design recipe steps!

• NOTE: it is also fine and encouraged to define and use named constants when you notice there is some
"set" value you are reusing!

• Signature and purpose statement comments are ONLY required for functions that you have written and
defined yourself – you do not write them for named constants, or for functions that are already built into
the Racket environment or provided modules.

– That said, if you copy one of the in-class functions for use in your homework, DO also copy its
signature, purpose, and check- expressions/tests as well as the function definition.

• The design recipe is important! You will receive substantial credit for the signature, purpose, header,
and examples/check-expects portions of your functions. Typically you'll get at least half-credit for a correct
signature, purpose, header, and examples/check-expects, even if your function body is not correct (and,
you'll typically lose at least half-credit if you omit these or do them poorly, even if your function body is

CS 111 - Homework 6 p. 2 of 6

correct).

• Please let me know if you have any questions or concerns about the above requirements.

Homework File Setup
Complete these problems in a file named 111hw6.rkt (that is, save your DrRacket Definitions window to
a file named 111hw6.rkt). Be sure to save frequently!

Start up DrRacket, if needed set the language to How To Design Programs - Beginning Student OR
Beginning Student with List Abbreviations level (your choice!), and add the HTDP/2e image and universe
AND batch-io modules by putting these expressions at the beginning of your Definitions window:
(require 2htdp/image)
(require 2htdp/universe)
(require 2htdp/batch-io)

Put a blank line, followed by these comments, adding in your name, and follow these with another blank line:

; your name here
; CS 111 - HW 6
; last modified: 2024-10-07

Problem 1 - function emphasize-list
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 1 ==="

...followed by another blank line.

Now, we want to consider lists whose contents are ONLY strings!

Following the design recipe, design and write a function emphasize-list that expects a list of strings,
and it returns a new list of strings in which !! has been added to the end of every string in the given list of
strings. (And if called with an empty list, it should simply return an empty list.) That is, the expression:
(emphasize-list (cons "Hey" (cons "Oh my!" (cons "mooo" empty))))

...should return:
(cons "Hey!!" (cons "Oh my!!!" (cons "mooo!!" empty)))

Problem 2 - a little more file output and file input practice
For this problem, you are not writing any new functions -- you are writing several compound expressions.

So, next, in your definitions window, after a blank line, type this string expression:
"=== Problem 2 ==="

...followed by another blank line. (And double-check that you put: (require 2htdp/batch-io)

...in your 111hw6.rkt file as noted in the Homework File Setup section!)

2 part a
After a blank line, type the string expression:
"--- 2 part a ---"

...followed by another blank line.

Remember: in the Week 6 Lab Exercise, you tried out module 2htdp/batch-io's write-file

CS 111 - Homework 6 p. 2 of 6

correct).

• Please let me know if you have any questions or concerns about the above requirements.

Homework File Setup
Complete these problems in a file named 111hw6.rkt (that is, save your DrRacket Definitions window to
a file named 111hw6.rkt). Be sure to save frequently!

Start up DrRacket, if needed set the language to How To Design Programs - Beginning Student OR
Beginning Student with List Abbreviations level (your choice!), and add the HTDP/2e image and universe
AND batch-io modules by putting these expressions at the beginning of your Definitions window:
(require 2htdp/image)
(require 2htdp/universe)
(require 2htdp/batch-io)

Put a blank line, followed by these comments, adding in your name, and follow these with another blank line:

; your name here
; CS 111 - HW 6
; last modified: 2024-10-07

Problem 1 - function emphasize-list
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 1 ==="

...followed by another blank line.

Now, we want to consider lists whose contents are ONLY strings!

Following the design recipe, design and write a function emphasize-list that expects a list of strings,
and it returns a new list of strings in which !! has been added to the end of every string in the given list of
strings. (And if called with an empty list, it should simply return an empty list.) That is, the expression:
(emphasize-list (cons "Hey" (cons "Oh my!" (cons "mooo" empty))))

...should return:
(cons "Hey!!" (cons "Oh my!!!" (cons "mooo!!" empty)))

Problem 2 - a little more file output and file input practice
For this problem, you are not writing any new functions -- you are writing several compound expressions.

So, next, in your definitions window, after a blank line, type this string expression:
"=== Problem 2 ==="

...followed by another blank line. (And double-check that you put: (require 2htdp/batch-io)

...in your 111hw6.rkt file as noted in the Homework File Setup section!)

2 part a
After a blank line, type the string expression:
"--- 2 part a ---"

...followed by another blank line.

Remember: in the Week 6 Lab Exercise, you tried out module 2htdp/batch-io's write-file

CS 111 - Homework 6 p. 3 of 6

function. (And its signature and purpose are included in the Week 6 Lab Exercise.)

Write an expression, using write-file, whose side-effects should be:

• to create a file whose whose name BEGINS with YOUR last name, and has the suffix (ENDS with)
.txt

• that contains at least 5 lines worth of words or phrases of your choice,

• making sure that at least two lines contain a phrase of more than one word each

– (Remember: write-file only expects two string arguments -- the name of the file to write to,
and the string to write there -- but you can use "\n" within a string to say that you want a newline
character.)

2 part b
After a blank line, type the string expression:
"--- 2 part b ---"

...followed by another blank line.

Remember: in the Week 6 Lab Exercise, you tried out module 2htdp/batch-io's read-lines
function. (And its signature and purpose are included in the Week 6 Lab Exercise.)

FIRST: Write an expression, using read-lines, whose value will be a list of strings, such that each
string is one line from the file you wrote in Problem 2 part a.

Hey -- Problem 1's emphasize-list function expects a list of strings! So:

SECOND: ALSO write an expression in which you call Problem 1's emphasize-list function with
that read-lines expression, reading from the file you wrote in Problem 2 part a, as its argument.

2 part c
After a blank line, type the string expression:
"--- 2 part c ---"

...followed by another blank line.

Remember: in the Week 6 Lab Exercise, you tried out module 2htdp/batch-io's read-words
function. (And its signature and purpose are included in the Week 6 Lab Exercise.)

FIRST: Write an expression, using read-words, whose value will be a list of strings, such that each
string is one "word" from the file you wrote in Problem 2 part a.

Again, Problem 1's emphasize-list function expects a list of strings -- so:

SECOND: ALSO write an expression in which you call Problem 1's emphasize-list function with
that read-words expression, reading from the file you wrote in Problem 2 part a, as its argument.

Problem 3 - function emphasize-from-file
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 3 ==="

...followed by another blank line.

Following the design recipe, design and write a function emphasize-from-file that expects a file
name, has the side effect of reading from that file, and returns a list of strings, each of which is a line from

CS 111 - Homework 6 p. 3 of 6

function. (And its signature and purpose are included in the Week 6 Lab Exercise.)

Write an expression, using write-file, whose side-effects should be:

• to create a file whose whose name BEGINS with YOUR last name, and has the suffix (ENDS with)
.txt

• that contains at least 5 lines worth of words or phrases of your choice,

• making sure that at least two lines contain a phrase of more than one word each

– (Remember: write-file only expects two string arguments -- the name of the file to write to,
and the string to write there -- but you can use "\n" within a string to say that you want a newline
character.)

2 part b
After a blank line, type the string expression:
"--- 2 part b ---"

...followed by another blank line.

Remember: in the Week 6 Lab Exercise, you tried out module 2htdp/batch-io's read-lines
function. (And its signature and purpose are included in the Week 6 Lab Exercise.)

FIRST: Write an expression, using read-lines, whose value will be a list of strings, such that each
string is one line from the file you wrote in Problem 2 part a.

Hey -- Problem 1's emphasize-list function expects a list of strings! So:

SECOND: ALSO write an expression in which you call Problem 1's emphasize-list function with
that read-lines expression, reading from the file you wrote in Problem 2 part a, as its argument.

2 part c
After a blank line, type the string expression:
"--- 2 part c ---"

...followed by another blank line.

Remember: in the Week 6 Lab Exercise, you tried out module 2htdp/batch-io's read-words
function. (And its signature and purpose are included in the Week 6 Lab Exercise.)

FIRST: Write an expression, using read-words, whose value will be a list of strings, such that each
string is one "word" from the file you wrote in Problem 2 part a.

Again, Problem 1's emphasize-list function expects a list of strings -- so:

SECOND: ALSO write an expression in which you call Problem 1's emphasize-list function with
that read-words expression, reading from the file you wrote in Problem 2 part a, as its argument.

Problem 3 - function emphasize-from-file
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 3 ==="

...followed by another blank line.

Following the design recipe, design and write a function emphasize-from-file that expects a file
name, has the side effect of reading from that file, and returns a list of strings, each of which is a line from

CS 111 - Homework 6 p. 4 of 6

that file followed by !!. For full credit, use emphasize-list appropriately in emphasize-from-
file's body.

Hint:

• The body of this function should be quite short!

Problem 4 - a function that writes to a file
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 4 ==="

...followed by another blank line.

CHOOSE ONE of the FOLLOWING OPTIONS for this problem. (You can choose to do more than one
for the practice, but only one of them will be graded, in the interests of time... 8-)).

option 4-1 - function ask-to-file
If you chose this option, after a blank line, type the string expression:
"--- Problem 4 - option 1 ---"

...followed by another blank line.

Consider function ask-how-doing, from Homework 2 - Problem 8. Copy its signature, purpose,
tests/check- expressions and definition into 111hw6.rkt.

Then, following the design recipe, design and write a function ask-to-file that expects a desired file
name and a person's name, has the side-effect of trying to write to that file name How are you doing,
...that person's name... ?, and returns the name of the file written. For full credit, use ask-how-doing
appropriately in ask-to-file's function body.

Hint:

• The body of this function should be quite short!

option 4-2 - function doubt-to-file
If you chose this option, after a blank line, type the string expression:
"--- Problem 4 - option 2 ---"

...followed by another blank line.

Consider function doubt-it, from Week 3 - Lecture 1. Copy its signature, purpose, tests/check-
expressions and definition into 111hw6.rkt.

Then, following the design recipe, design and write a function doubt-to-file that expects a desired file
name, a desired exclamation, and a phrase to doubt, has the side-effect of trying to write to that file name that
exclamation in all-uppercase followed by !, then a blank, then the phrase to doubt followed by ??, then a
blank, then the phrase to doubt followed by ??, and returns the name of the file written. For full credit, use
doubt-it appropriately in doubt-to-file's function body.

Hint:

• The body of this function should be quite short!

option 4-3 - function emphasize-to-file
If you chose this option, after a blank line, type the string expression:

CS 111 - Homework 6 p. 4 of 6

that file followed by !!. For full credit, use emphasize-list appropriately in emphasize-from-
file's body.

Hint:

• The body of this function should be quite short!

Problem 4 - a function that writes to a file
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 4 ==="

...followed by another blank line.

CHOOSE ONE of the FOLLOWING OPTIONS for this problem. (You can choose to do more than one
for the practice, but only one of them will be graded, in the interests of time... 8-)).

option 4-1 - function ask-to-file
If you chose this option, after a blank line, type the string expression:
"--- Problem 4 - option 1 ---"

...followed by another blank line.

Consider function ask-how-doing, from Homework 2 - Problem 8. Copy its signature, purpose,
tests/check- expressions and definition into 111hw6.rkt.

Then, following the design recipe, design and write a function ask-to-file that expects a desired file
name and a person's name, has the side-effect of trying to write to that file name How are you doing,
...that person's name... ?, and returns the name of the file written. For full credit, use ask-how-doing
appropriately in ask-to-file's function body.

Hint:

• The body of this function should be quite short!

option 4-2 - function doubt-to-file
If you chose this option, after a blank line, type the string expression:
"--- Problem 4 - option 2 ---"

...followed by another blank line.

Consider function doubt-it, from Week 3 - Lecture 1. Copy its signature, purpose, tests/check-
expressions and definition into 111hw6.rkt.

Then, following the design recipe, design and write a function doubt-to-file that expects a desired file
name, a desired exclamation, and a phrase to doubt, has the side-effect of trying to write to that file name that
exclamation in all-uppercase followed by !, then a blank, then the phrase to doubt followed by ??, then a
blank, then the phrase to doubt followed by ??, and returns the name of the file written. For full credit, use
doubt-it appropriately in doubt-to-file's function body.

Hint:

• The body of this function should be quite short!

option 4-3 - function emphasize-to-file
If you chose this option, after a blank line, type the string expression:

CS 111 - Homework 6 p. 5 of 6

"--- Problem 4 - option 3 ---"

...followed by another blank line.

Consider function string-list-smush, from Week 6 - Lecture 2. Copy its signature, purpose,
tests/check- expressions and definition into 111hw6.rkt.

Following the design recipe, design and write a function emphasize-to-file that expects a file name
and a list of strings, has the side effect of trying to write to that file name each of the strings in that list
followed by !! on its own line, and returns the name of the file written. For full credit, use emphasize-
list and string-list-smush appropriately in emphasize-to-file's body.

Hint:

• The body of this function should be quite short!

Problem 5 - another recursive function
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 5 ==="

...followed by another blank line.

CHOOSE ONE of the FOLLOWING OPTIONS for this problem. (You can choose to do more than one
for the practice, but only one of them will be graded, in the interests of time... 8-)).

option 5-1 - function words-to-images
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 1 ---"

...followed by another blank line.

Using the design recipe, write a function words-to-images that expects a list of words, and returns a list
of image-versions of those words. (You may choose the font size and color for the image-versions of the
words -- they may be always the same, or you may creatively use random, your choice!)

option 5-2 - functions images-to-scene
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 2 ---"

...followed by another blank line.

Using the design recipe, write a function images-to-scene that expects a list of images, and returns a
scene in which those images have been placed at random locations within that scene.

IMPORTANT: use check-random to write your non-empty-list tests/check- expressions for this
function!

Now write a big-bang expression that:

• has a list of images as its first argument
• has a to-draw clause using images-to-scene
• has an on-tick clause using rest and (optionally) how fast the ticker should tick
• has a stop-when clause using empty?

CS 111 - Homework 6 p. 5 of 6

"--- Problem 4 - option 3 ---"

...followed by another blank line.

Consider function string-list-smush, from Week 6 - Lecture 2. Copy its signature, purpose,
tests/check- expressions and definition into 111hw6.rkt.

Following the design recipe, design and write a function emphasize-to-file that expects a file name
and a list of strings, has the side effect of trying to write to that file name each of the strings in that list
followed by !! on its own line, and returns the name of the file written. For full credit, use emphasize-
list and string-list-smush appropriately in emphasize-to-file's body.

Hint:

• The body of this function should be quite short!

Problem 5 - another recursive function
Next, in your definitions window, after a blank line, type this string expression:
"=== Problem 5 ==="

...followed by another blank line.

CHOOSE ONE of the FOLLOWING OPTIONS for this problem. (You can choose to do more than one
for the practice, but only one of them will be graded, in the interests of time... 8-)).

option 5-1 - function words-to-images
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 1 ---"

...followed by another blank line.

Using the design recipe, write a function words-to-images that expects a list of words, and returns a list
of image-versions of those words. (You may choose the font size and color for the image-versions of the
words -- they may be always the same, or you may creatively use random, your choice!)

option 5-2 - functions images-to-scene
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 2 ---"

...followed by another blank line.

Using the design recipe, write a function images-to-scene that expects a list of images, and returns a
scene in which those images have been placed at random locations within that scene.

IMPORTANT: use check-random to write your non-empty-list tests/check- expressions for this
function!

Now write a big-bang expression that:

• has a list of images as its first argument
• has a to-draw clause using images-to-scene
• has an on-tick clause using rest and (optionally) how fast the ticker should tick
• has a stop-when clause using empty?

CS 111 - Homework 6 p. 6 of 6

option 5-3 - function many-your-chosen-img-scene
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 3 ---"

...followed by another blank line.

Consider your function random-your-chosen-img from Homework 5 - Problem 3, that expects a number,
and returns a randomly-colored image whose size is somehow based on that number. Copy that function's
signature, purpose, check- expressions, and function definition into your 111hw6.rkt file.

Now consider a list of numbers in which each number represents the size of the kind of image you chose for
your function random-your-chosen-img.

Using the design recipe, develop a function many-your-chosen-img-scene, which expects a list of
numbers representing image sizes, and returns a scene containing instances of that kind of image with those
sizes but of random colors, each placed in the center of the scene.

(Optional variation: you can place them randomly in the scene, also, IF you prefer, instead of having them
all in the center.)

You should use your random-your-chosen-img function in your many-your-chosen-img-scene function.

IMPORTANT: use check-random to write your non-empty-list tests/check- expressions for this
function!

Copy the signature, purpose, check- expressions, and function definition for Week 6 Lecture 1's function
add1-list into your 111hw6.rkt.

Now write a big-bang expression that:

• has a list of positive numbers as its first argument
• has a to-draw clause using many-your-chosen-img-scene
• has an on-tick clause using add1-list and (optionally) how fast the ticker should tick

option 5-4 - function dot-product
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 4 ---"

...followed by another blank line.

Consider the concept of a dot product of two vectors:

Vector-a = (a1 a2 ... aN) where each "a" value is a number

Vector-b = (b1 b2 ... bN) where each "b" value is a number

The dot-product of Vector-a and Vector-b is, then, is calculated as a number to be:

(a1 * b1) + (a2 * b2) + ... + (aN * bN)

And what, really, is a vector but a list of numbers?

Using the design recipe, design a function dot-product that expects two vectors of the same size,
expressed as two lists of numbers of the same length, and returns the dot product of those two vectors.

NOTE #1: assume that the dot product of two empty vectors is 0.

NOTE #2: for our purposes in this bonus problem, you may ASSUME the two argument lists indeed are the
same length.

CS 111 - Homework 6 p. 6 of 6

option 5-3 - function many-your-chosen-img-scene
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 3 ---"

...followed by another blank line.

Consider your function random-your-chosen-img from Homework 5 - Problem 3, that expects a number,
and returns a randomly-colored image whose size is somehow based on that number. Copy that function's
signature, purpose, check- expressions, and function definition into your 111hw6.rkt file.

Now consider a list of numbers in which each number represents the size of the kind of image you chose for
your function random-your-chosen-img.

Using the design recipe, develop a function many-your-chosen-img-scene, which expects a list of
numbers representing image sizes, and returns a scene containing instances of that kind of image with those
sizes but of random colors, each placed in the center of the scene.

(Optional variation: you can place them randomly in the scene, also, IF you prefer, instead of having them
all in the center.)

You should use your random-your-chosen-img function in your many-your-chosen-img-scene function.

IMPORTANT: use check-random to write your non-empty-list tests/check- expressions for this
function!

Copy the signature, purpose, check- expressions, and function definition for Week 6 Lecture 1's function
add1-list into your 111hw6.rkt.

Now write a big-bang expression that:

• has a list of positive numbers as its first argument
• has a to-draw clause using many-your-chosen-img-scene
• has an on-tick clause using add1-list and (optionally) how fast the ticker should tick

option 5-4 - function dot-product
If you chose this option, after a blank line, type the string expression:
"--- Problem 5 - option 4 ---"

...followed by another blank line.

Consider the concept of a dot product of two vectors:

Vector-a = (a1 a2 ... aN) where each "a" value is a number

Vector-b = (b1 b2 ... bN) where each "b" value is a number

The dot-product of Vector-a and Vector-b is, then, is calculated as a number to be:

(a1 * b1) + (a2 * b2) + ... + (aN * bN)

And what, really, is a vector but a list of numbers?

Using the design recipe, design a function dot-product that expects two vectors of the same size,
expressed as two lists of numbers of the same length, and returns the dot product of those two vectors.

NOTE #1: assume that the dot product of two empty vectors is 0.

NOTE #2: for our purposes in this bonus problem, you may ASSUME the two argument lists indeed are the
same length.

	Deadline
	Purpose
	How to submit
	Important notes
	Homework File Setup
	Problem 1 - function emphasize-list
	Problem 2 - a little more file output and file input practice
	2 part a
	2 part b
	2 part c

	Problem 3 - function emphasize-from-file
	Problem 4 - a function that writes to a file
	option 4-1 - function ask-to-file
	option 4-2 - function doubt-to-file
	option 4-3 - function emphasize-to-file

	Problem 5 - another recursive function
	option 5-1 - function words-to-images
	option 5-2 - functions images-to-scene
	option 5-3 - function many-your-chosen-img-scene
	option 5-4 - function dot-product

