
CS 111 - Homework 9 p. 1 of 6

CS 111 - Homework 9
Deadline
11:59 pm on Friday, November 8, 2024

Purpose
To practice designing more C++ functions, including one using a string class method and some with if
statements.

How to submit
You complete Problems 1 and 2 on the course Canvas site (short-answer questions on various C++-related
topics), so that you can see if you are on the right track.

Then, you will submit your work for Problems 3 onward, in your files 111hw9.cpp and
111hw9-out.txt, on the course Canvas site.

Submit your 111hw9.cpp file-in-progress early and often!

• Each time you submit a version of your 111hw9.cpp, IF that version currently compiles, also submit a
copy of the example output from running that latest version in file 111hw9-out.txt.

• Be careful that each submitted 111hw9-out.txt was created by running the compiled version of the
111hw9.cpp file submitted along with it.

Important notes - 5 points
• Be careful to follow class style standards, including required class indentation, especially with if

statements involved; for example,

– curly braces on their own line, lined up with the previous line as shown in posted class examples

– each statement within curly braces is indented by at least 3 spaces

...and if you are not sure what is meant by any of the above, see the posted class examples!

• You are still expected to follow the Design Recipe for all functions that you design/define.

– Remember that a C++ "graphic design recipe helper" has been posted on the course Canvas site and on
the public course web site, "translating" the design recipe steps into C++ syntax.

– Remember, you will receive significant credit for the signature, purpose, header, and tests/test
expressions portions of your functions.

– Typically you'll get at least half-credit for a correct signature, purpose, header, and tests/test
expressions, even if your function body is not correct.

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your function body is
correct).

• Be especially careful to include at least two tests/test expressions for every function, including at least one
specific test/test expression for each "kind"/category of data, and (when there are boundaries) for
boundaries between data. You can lose credit for not doing so.

And, remember that tests should be:

– written as bool expressions within a non-main function's opening comment, after its purpose

CS 111 - Homework 9 p. 1 of 6

CS 111 - Homework 9
Deadline
11:59 pm on Friday, November 8, 2024

Purpose
To practice designing more C++ functions, including one using a string class method and some with if
statements.

How to submit
You complete Problems 1 and 2 on the course Canvas site (short-answer questions on various C++-related
topics), so that you can see if you are on the right track.

Then, you will submit your work for Problems 3 onward, in your files 111hw9.cpp and
111hw9-out.txt, on the course Canvas site.

Submit your 111hw9.cpp file-in-progress early and often!

• Each time you submit a version of your 111hw9.cpp, IF that version currently compiles, also submit a
copy of the example output from running that latest version in file 111hw9-out.txt.

• Be careful that each submitted 111hw9-out.txt was created by running the compiled version of the
111hw9.cpp file submitted along with it.

Important notes - 5 points
• Be careful to follow class style standards, including required class indentation, especially with if

statements involved; for example,

– curly braces on their own line, lined up with the previous line as shown in posted class examples

– each statement within curly braces is indented by at least 3 spaces

...and if you are not sure what is meant by any of the above, see the posted class examples!

• You are still expected to follow the Design Recipe for all functions that you design/define.

– Remember that a C++ "graphic design recipe helper" has been posted on the course Canvas site and on
the public course web site, "translating" the design recipe steps into C++ syntax.

– Remember, you will receive significant credit for the signature, purpose, header, and tests/test
expressions portions of your functions.

– Typically you'll get at least half-credit for a correct signature, purpose, header, and tests/test
expressions, even if your function body is not correct.

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your function body is
correct).

• Be especially careful to include at least two tests/test expressions for every function, including at least one
specific test/test expression for each "kind"/category of data, and (when there are boundaries) for
boundaries between data. You can lose credit for not doing so.

And, remember that tests should be:

– written as bool expressions within a non-main function's opening comment, after its purpose

CS 111 - Homework 9 p. 2 of 6

statement, AND

– written within parentheses () within a cout in the testing main function.

• Remember: in the CS50 IDE at https://cs50.dev:

– each time you want to compile your program-in-progress:

In a CS50 terminal, open to the folder CONTAINING 111hw9.cpp, ("Open in Integrated
Terminal"), type:
g++ 111hw9.cpp -o 111hw9

– when it has successfully compiled and created an executable program result, each time you want to run
your program-in-progress:

In that same CS50 terminal, open to the folder CONTAINING 111hw9.cpp, type:
./111hw9

– when you are satisfied with the program's output for one of your functions, you can create an example
output from running your program at that point to submit to Canvas by running :
./111hw9 > 111hw9-out.txt

• Please let me know if you have any questions or concerns about the above requirements.

Problem 1 - 7 points
Problem 1 is correctly answering the "HW 9 - Problem 1 - Short-answer questions on string methods" on
the course Canvas site.

Problem 2 - 6 points
Problem 2 is correctly answering the "HW 9 - Problem 2 - Short-answer questions mostly on reading if
statements" on the course Canvas site.

Homework Program Setup for Problems 3 onward
• Copy the contents of the file 111template.cpp, posted on the course Canvas site and on the public

course web site, into a file named 111hw9.cpp within the CS50 IDE (at https://cs50.dev/).

• See the comment that has by: and last modified: ?

– START that comment with: CS 111 - HW 9

– Then put your name after by: , and today's date after last modified: .

– For example:
/*---
 CS 111 - HW 9
 by: Your Name
 last modified: 2024-11-04
---*/

Problem 3 - 14 points
In the "first main.cpp template" you pasted into your 111hw9.cpp, find the comment:
/*--- PUT YOUR SIGNATURES, PURPOSES, TESTS, and FUNCTION DEFINITIONS HERE ---*/

AFTER this comment -- but BEFORE the function header for the function named main -- type a blank

CS 111 - Homework 9 p. 2 of 6

statement, AND

– written within parentheses () within a cout in the testing main function.

• Remember: in the CS50 IDE at https://cs50.dev:

– each time you want to compile your program-in-progress:

In a CS50 terminal, open to the folder CONTAINING 111hw9.cpp, ("Open in Integrated
Terminal"), type:
g++ 111hw9.cpp -o 111hw9

– when it has successfully compiled and created an executable program result, each time you want to run
your program-in-progress:

In that same CS50 terminal, open to the folder CONTAINING 111hw9.cpp, type:
./111hw9

– when you are satisfied with the program's output for one of your functions, you can create an example
output from running your program at that point to submit to Canvas by running :
./111hw9 > 111hw9-out.txt

• Please let me know if you have any questions or concerns about the above requirements.

Problem 1 - 7 points
Problem 1 is correctly answering the "HW 9 - Problem 1 - Short-answer questions on string methods" on
the course Canvas site.

Problem 2 - 6 points
Problem 2 is correctly answering the "HW 9 - Problem 2 - Short-answer questions mostly on reading if
statements" on the course Canvas site.

Homework Program Setup for Problems 3 onward
• Copy the contents of the file 111template.cpp, posted on the course Canvas site and on the public

course web site, into a file named 111hw9.cpp within the CS50 IDE (at https://cs50.dev/).

• See the comment that has by: and last modified: ?

– START that comment with: CS 111 - HW 9

– Then put your name after by: , and today's date after last modified: .

– For example:
/*---
 CS 111 - HW 9
 by: Your Name
 last modified: 2024-11-04
---*/

Problem 3 - 14 points
In the "first main.cpp template" you pasted into your 111hw9.cpp, find the comment:
/*--- PUT YOUR SIGNATURES, PURPOSES, TESTS, and FUNCTION DEFINITIONS HERE ---*/

AFTER this comment -- but BEFORE the function header for the function named main -- type a blank

CS 111 - Homework 9 p. 3 of 6

link, and then type the comment:
/*===
 Problem 3
===*/

Recall, from the Week 10 lab discussion and Problem 1's short-answer questions, that the C++ string class
includes a substring method named substr, one of whose versions:

• expects a starting position and a length, and

• returns the string starting at that position and going that many characters in the calling string
instance (or until the end of that calling string instance, whichever comes first).

• And, interestingly, the position of the 1st character in a string is 0!

That is, for:
const string CHEER = "hip, Hip, HOORAY!";

...this is a true expression:
CHEER.substr(5, 3) == "Hip"

Your function for Problem 3
Use the design recipe to design a C++ function monogram that expects a first name, middle name, and last
name, and returns an appropriate "monogram" for that name (a string with tasteful angle brackets
surrounding the initials of that first, middle, and last name). For example,

monogram("Ava", "Marie", "DuVernay") would return "<AMD>", and

monogram("Grace", "Murray", "Hopper") would return "<GMH>".

OPTIONAL VARIATION:

– You may design a more-elaborate resulting monogram, as long as it includes initials of the given first,
middle, and last name.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for monogram.

– (HINT: Note that, for this particular function, you should use the string class's substr method,
which returns a string, instead of the string class's at method, which returns a char.)

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– IMPORTANT: be careful with your expected value expression in monogram's test expressions; you
cannot use + between two char* expressions, nor between a char and a char* expression.

This is a case where the expected value expression likely needs to be just the hoped-for resulting literal
expression, without any operations.

ASK ME if you have questions about this or run into problems related to this.

• IF YOU WOULD LIKE: Feel free to add EXAMPLE CALLS to your main function calling monogram
after the above tests if you would like, putting the call INSIDE of a cout statement as follows:

cout << (monogram("Grace", "Murray", "Hopper")) << endl;

CS 111 - Homework 9 p. 3 of 6

link, and then type the comment:
/*===
 Problem 3
===*/

Recall, from the Week 10 lab discussion and Problem 1's short-answer questions, that the C++ string class
includes a substring method named substr, one of whose versions:

• expects a starting position and a length, and

• returns the string starting at that position and going that many characters in the calling string
instance (or until the end of that calling string instance, whichever comes first).

• And, interestingly, the position of the 1st character in a string is 0!

That is, for:
const string CHEER = "hip, Hip, HOORAY!";

...this is a true expression:
CHEER.substr(5, 3) == "Hip"

Your function for Problem 3
Use the design recipe to design a C++ function monogram that expects a first name, middle name, and last
name, and returns an appropriate "monogram" for that name (a string with tasteful angle brackets
surrounding the initials of that first, middle, and last name). For example,

monogram("Ava", "Marie", "DuVernay") would return "<AMD>", and

monogram("Grace", "Murray", "Hopper") would return "<GMH>".

OPTIONAL VARIATION:

– You may design a more-elaborate resulting monogram, as long as it includes initials of the given first,
middle, and last name.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for monogram.

– (HINT: Note that, for this particular function, you should use the string class's substr method,
which returns a string, instead of the string class's at method, which returns a char.)

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– IMPORTANT: be careful with your expected value expression in monogram's test expressions; you
cannot use + between two char* expressions, nor between a char and a char* expression.

This is a case where the expected value expression likely needs to be just the hoped-for resulting literal
expression, without any operations.

ASK ME if you have questions about this or run into problems related to this.

• IF YOU WOULD LIKE: Feel free to add EXAMPLE CALLS to your main function calling monogram
after the above tests if you would like, putting the call INSIDE of a cout statement as follows:

cout << (monogram("Grace", "Murray", "Hopper")) << endl;

CS 111 - Homework 9 p. 4 of 6

Problem 4 - 21 points
After your function for Problem 3, type a blank link, and then type the comment:
/*===
 Problem 4
===*/

Now for a problem using if statements, along with some named constants.

Recall the function from Homework 4, Problem 4 that gives discounts to frequent shoppers based on their
frequent-shopper level. As a reminder:

A store gives discounts to frequent shoppers based on their past level of purchases; they are either "bronze"
level, "silver" level, or "gold" level. Bronze level frequent shoppers receive a 10% discount, silver level
frequent shoppers receive a 15% discount, and gold level frequent shoppers receive a 20% discount. All other
shoppers receive no discount.

Use the design recipe to develop a C++ function get_freq_disc that expects a string representing the
level of frequent shopper, and returns the appropriate discount for that level written as a decimal fraction. It
should return a discount of 0 if the shopper level is not one of those noted above.

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• THIS function also uses named constants -- three of them! Here's how I declared them in the Homework 4
posted example solutions:
(define BRONZE-DISC 0.1)

(define SILVER-DISC 0.15)

(define GOLD-DISC 0.2)

– Write C++ named constant declaration statements for these, declaring:

BRONZE_DISC

SILVER_DISC

GOLD_DISC

...giving them the correct values.

– (You should declare these before get_freq_disc's function header.)

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for get_freq_disc.

– FOR FULL CREDIT, make sure that you use your named constants appropriately within
get_freq_disc's function body.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– At least how many tests, covering at least which cases, are needed for get_freq_disc?

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

CS 111 - Homework 9 p. 4 of 6

Problem 4 - 21 points
After your function for Problem 3, type a blank link, and then type the comment:
/*===
 Problem 4
===*/

Now for a problem using if statements, along with some named constants.

Recall the function from Homework 4, Problem 4 that gives discounts to frequent shoppers based on their
frequent-shopper level. As a reminder:

A store gives discounts to frequent shoppers based on their past level of purchases; they are either "bronze"
level, "silver" level, or "gold" level. Bronze level frequent shoppers receive a 10% discount, silver level
frequent shoppers receive a 15% discount, and gold level frequent shoppers receive a 20% discount. All other
shoppers receive no discount.

Use the design recipe to develop a C++ function get_freq_disc that expects a string representing the
level of frequent shopper, and returns the appropriate discount for that level written as a decimal fraction. It
should return a discount of 0 if the shopper level is not one of those noted above.

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• THIS function also uses named constants -- three of them! Here's how I declared them in the Homework 4
posted example solutions:
(define BRONZE-DISC 0.1)

(define SILVER-DISC 0.15)

(define GOLD-DISC 0.2)

– Write C++ named constant declaration statements for these, declaring:

BRONZE_DISC

SILVER_DISC

GOLD_DISC

...giving them the correct values.

– (You should declare these before get_freq_disc's function header.)

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for get_freq_disc.

– FOR FULL CREDIT, make sure that you use your named constants appropriately within
get_freq_disc's function body.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– At least how many tests, covering at least which cases, are needed for get_freq_disc?

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

CS 111 - Homework 9 p. 5 of 6

Problem 5 - 15 points
NO if-statements here -- this is practice writing a function that calls another in C++.

After your function for Problem 4, type a blank link, and then type the comment:
/*===
 Problem 5
===*/

Recall the function from Homework 4, Problem 5 that used Homework 4, Problem 4's function to determine
the calculated discounted total for a purchase by a frequent shopper.

That is, you will write a function that happens to use Problem 4's get_freq_disc function.

Use the design recipe to develop a C++ function total_incl_disc that expects a string representing the
level of frequent shopper and the total of a purchase before discount, and returns the calculated discounted
total for that purchase after applying the appropriate discount, as provided by the get_freq_disc
function.

(Hint: you should not need an if statement in this particular function, thanks to get_freq_disc.)

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• OPTIONAL VARIATION:

– But, would you like some more optional if practice here? If so, you may write this so that, in addition
to the frequent shopper discount, it calculates an additional discount based on the purchase total before
discount (for example, they might receive an additional 5% discount if their total is more than 50
dollars).

– If you do this optional variation, make sure you describe this in your function's purpose statement.

– If you do this optional variation, note that you will need more than two tests (the number of tests
needed will depend on the rules you decide to use of the additional discount).

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for total_incl_disc.

– FOR FULL CREDIT, make sure that you call get_freq_disc appropriately within
total_incl_disc's function body.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 6 - 17 points
After your function for Problem 5, type a blank link, and then type the comment:
/*===
 Problem 6
===*/

Recall the function from Homework 4, Problem 6 that recommends what outerwear to wear on a given day
given the predicted high temperature in Fahrenheit degrees, based on the following:

CS 111 - Homework 9 p. 5 of 6

Problem 5 - 15 points
NO if-statements here -- this is practice writing a function that calls another in C++.

After your function for Problem 4, type a blank link, and then type the comment:
/*===
 Problem 5
===*/

Recall the function from Homework 4, Problem 5 that used Homework 4, Problem 4's function to determine
the calculated discounted total for a purchase by a frequent shopper.

That is, you will write a function that happens to use Problem 4's get_freq_disc function.

Use the design recipe to develop a C++ function total_incl_disc that expects a string representing the
level of frequent shopper and the total of a purchase before discount, and returns the calculated discounted
total for that purchase after applying the appropriate discount, as provided by the get_freq_disc
function.

(Hint: you should not need an if statement in this particular function, thanks to get_freq_disc.)

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• OPTIONAL VARIATION:

– But, would you like some more optional if practice here? If so, you may write this so that, in addition
to the frequent shopper discount, it calculates an additional discount based on the purchase total before
discount (for example, they might receive an additional 5% discount if their total is more than 50
dollars).

– If you do this optional variation, make sure you describe this in your function's purpose statement.

– If you do this optional variation, note that you will need more than two tests (the number of tests
needed will depend on the rules you decide to use of the additional discount).

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for total_incl_disc.

– FOR FULL CREDIT, make sure that you call get_freq_disc appropriately within
total_incl_disc's function body.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 6 - 17 points
After your function for Problem 5, type a blank link, and then type the comment:
/*===
 Problem 6
===*/

Recall the function from Homework 4, Problem 6 that recommends what outerwear to wear on a given day
given the predicted high temperature in Fahrenheit degrees, based on the following:

CS 111 - Homework 9 p. 6 of 6

<= 32 - "down jacket"
(32, 48] - "sweater"
(48, 65] - "sweatshirt"
> 65 - "no outerwear today"

Use the design recipe to develop a C++ function sugg_outerwear that expects the predicted high
temperature in Fahrenheit, and returns the recommended outerwear for that day.

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for sugg_outerwear.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– For full credit, make sure that you include at least the minimum required tests for this data (hint:
including boundary cases!).

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 7 - 15 points
After your function for Problem 6, type a blank link, and then type the comment:
/*===
 Problem 7
===*/

Recall the function from Homework 4, Problem 7 regarding pizza consumption and exercise.

Use the design recipe to develop a C++ function workout_hrs that expects a number that represents daily
pizza consumption, in slices, and returns a number, in hours, that represents the amount of exercise time that
you need.

For a daily intake of : You need to work out for :

0 slices 1/2 hour
(0, 3] slices 1 hour
> 3 slices 1 hour + (1/2 hour per slice above 3)

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for workout_hrs.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– For full credit, make sure that you include at least 4 well-chosen, appropriate tests. You could certainly
follow the example of the tests from the Racket example solution for workout_hrs.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

CS 111 - Homework 9 p. 6 of 6

<= 32 - "down jacket"
(32, 48] - "sweater"
(48, 65] - "sweatshirt"
> 65 - "no outerwear today"

Use the design recipe to develop a C++ function sugg_outerwear that expects the predicted high
temperature in Fahrenheit, and returns the recommended outerwear for that day.

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for sugg_outerwear.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– For full credit, make sure that you include at least the minimum required tests for this data (hint:
including boundary cases!).

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 7 - 15 points
After your function for Problem 6, type a blank link, and then type the comment:
/*===
 Problem 7
===*/

Recall the function from Homework 4, Problem 7 regarding pizza consumption and exercise.

Use the design recipe to develop a C++ function workout_hrs that expects a number that represents daily
pizza consumption, in slices, and returns a number, in hours, that represents the amount of exercise time that
you need.

For a daily intake of : You need to work out for :

0 slices 1/2 hour
(0, 3] slices 1 hour
> 3 slices 1 hour + (1/2 hour per slice above 3)

(Note that you can find the Racket example solution for this on the course Canvas site, under "Selected
solutions - Homeworks".)

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for workout_hrs.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– For full credit, make sure that you include at least 4 well-chosen, appropriate tests. You could certainly
follow the example of the tests from the Racket example solution for workout_hrs.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

	Deadline
	Purpose
	How to submit
	Important notes - 5 points
	Problem 1 - 7 points
	Problem 2 - 6 points
	Homework Program Setup for Problems 3 onward
	Problem 3 - 14 points
	Your function for Problem 3

	Problem 4 - 21 points
	Problem 5 - 15 points
	Problem 6 - 17 points
	Problem 7 - 15 points

