
CS 111 - Homework 10 p. 1 of 6

CS 111 - Homework 10
Deadline
11:59 pm on Friday, November 22, 2024

Purpose
To practice designing more C++ functions, including some using switch statements, and to practice a bit
with local variables and interactive input.

How to submit
You complete Problems 1-4 on the course Canvas site (short-answer questions on various C++-related
topics), so that you can see if you are on the right track.

Then, you will submit your work for Problems 4 onward, in your files 111hw10.cpp,
111hw10-out.txt, and 111hw10-prob8.cpp, on the course Canvas site.

(So, NOTE that, THIS time, you will be creating TWO .cpp files to turn in, for the remaining problems!)

Turn in versions of your files early and often!

• Each time you submit a version of your 111hw10.cpp, IF that version currently compiles, also submit a
copy of the example output from running that latest version in file 111hw10-out.txt.

• Be careful that each submitted 111hw10-out.txt was created by running the compiled version of the
111hw10.cpp file submitted along with it.

• (You are NOT submitting a 111hw10-prob8-out.txt file, for the same reason you were not asked to
submit a file lab12-out.txt for the Week 12 Lab Exercise!).

Important notes - 6 points
• NOTE: if you are just adding statements to a main function, the usual design recipe steps are NOT

required. (They are, of course, required for all (non-main) functions that you design/define.)

• IF you would like: FEEL FREE to include additional couts of endl or spacing or headings between
testing calls of different problems if you would like to have more-readable program output!

• Be careful to follow class style standards, including required class indentation, especially with if and
switch statements involved; for example,

– curly braces on their own line, lined up with the previous line as shown in posted class examples

– each statement within curly braces is indented by at least 3 spaces

– the statements for each case are also indented under that case by at least 3 spaces

...and if you are not sure what is meant by any of the above, see the posted class examples!

• You are still expected to follow the Design Recipe for all (non-main) functions that you design/define.

– Remember the C++ "graphic design recipe helper" posted on the course Canvas site and on the public
course web site, "translating" the design recipe steps into C++ syntax.

– Remember, you will receive significant credit for the signature, purpose, header, and tests/test
expressions portions of your functions.

– Typically you'll get at least half-credit for a correct signature, purpose, header, and tests/test

CS 111 - Homework 10 p. 1 of 6

CS 111 - Homework 10
Deadline
11:59 pm on Friday, November 22, 2024

Purpose
To practice designing more C++ functions, including some using switch statements, and to practice a bit
with local variables and interactive input.

How to submit
You complete Problems 1-4 on the course Canvas site (short-answer questions on various C++-related
topics), so that you can see if you are on the right track.

Then, you will submit your work for Problems 4 onward, in your files 111hw10.cpp,
111hw10-out.txt, and 111hw10-prob8.cpp, on the course Canvas site.

(So, NOTE that, THIS time, you will be creating TWO .cpp files to turn in, for the remaining problems!)

Turn in versions of your files early and often!

• Each time you submit a version of your 111hw10.cpp, IF that version currently compiles, also submit a
copy of the example output from running that latest version in file 111hw10-out.txt.

• Be careful that each submitted 111hw10-out.txt was created by running the compiled version of the
111hw10.cpp file submitted along with it.

• (You are NOT submitting a 111hw10-prob8-out.txt file, for the same reason you were not asked to
submit a file lab12-out.txt for the Week 12 Lab Exercise!).

Important notes - 6 points
• NOTE: if you are just adding statements to a main function, the usual design recipe steps are NOT

required. (They are, of course, required for all (non-main) functions that you design/define.)

• IF you would like: FEEL FREE to include additional couts of endl or spacing or headings between
testing calls of different problems if you would like to have more-readable program output!

• Be careful to follow class style standards, including required class indentation, especially with if and
switch statements involved; for example,

– curly braces on their own line, lined up with the previous line as shown in posted class examples

– each statement within curly braces is indented by at least 3 spaces

– the statements for each case are also indented under that case by at least 3 spaces

...and if you are not sure what is meant by any of the above, see the posted class examples!

• You are still expected to follow the Design Recipe for all (non-main) functions that you design/define.

– Remember the C++ "graphic design recipe helper" posted on the course Canvas site and on the public
course web site, "translating" the design recipe steps into C++ syntax.

– Remember, you will receive significant credit for the signature, purpose, header, and tests/test
expressions portions of your functions.

– Typically you'll get at least half-credit for a correct signature, purpose, header, and tests/test

CS 111 - Homework 10 p. 2 of 6

expressions, even if your function body is not correct.

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your function body is
correct).

• Be especially careful to include at least two tests/test expressions for every function, including at least one
specific test/test expression for each "kind"/category of data, and (when there are boundaries) for
boundaries between data. You can lose credit for not doing so.

And, remember that tests should be:

– written as bool expressions within a non-main function's opening comment, after its purpose
statement, AND

– written within parentheses () within a cout in the testing main function.

• Please let me know if you have any questions or concerns about the above requirements.

Problem 1 - 8 points
Problem 1 is correctly answering the "HW 10 - Problem 1 - Short-answer questions on switch statement
syntax" on the course Canvas site.

Problem 2 - 8 points
Problem 2 is correctly answering the "HW 10 - Problem 2 - Short-answer questions on when you can use a
switch" on the course Canvas site.

Problem 3 - 6 points
Problem 3 is correctly answering the "HW 10 - Problem 3 - Short-answer questions on switch, cout, and
return" on the course Canvas site.

Problem 4 - 4 points
Problem 4 is correctly answering the "HW 10 - Problem 4 - Short-answer questions focusing on assignment
statements" on the course Canvas site.

Homework Program Setup for Problems 5 onward
For EACH of the TWO programs involved in this homework:

• Copy the contents of the 111template.cpp, posted on the course Canvas site and on the public course
web site, into a file within the CS50 IDE (at https:/cs50.dev/) named as specified in Problem 5 and
Problem 8.

• See the comment that has by: and last modified: ?

– START that comment with: CS 111 - HW 10

– Then put your name after by: , and today's date after last modified: .

– For example:
/*---
 CS 111 - HW 10
 by: Your Name
 last modified: 2024-11-18
---*/

CS 111 - Homework 10 p. 2 of 6

expressions, even if your function body is not correct.

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your function body is
correct).

• Be especially careful to include at least two tests/test expressions for every function, including at least one
specific test/test expression for each "kind"/category of data, and (when there are boundaries) for
boundaries between data. You can lose credit for not doing so.

And, remember that tests should be:

– written as bool expressions within a non-main function's opening comment, after its purpose
statement, AND

– written within parentheses () within a cout in the testing main function.

• Please let me know if you have any questions or concerns about the above requirements.

Problem 1 - 8 points
Problem 1 is correctly answering the "HW 10 - Problem 1 - Short-answer questions on switch statement
syntax" on the course Canvas site.

Problem 2 - 8 points
Problem 2 is correctly answering the "HW 10 - Problem 2 - Short-answer questions on when you can use a
switch" on the course Canvas site.

Problem 3 - 6 points
Problem 3 is correctly answering the "HW 10 - Problem 3 - Short-answer questions on switch, cout, and
return" on the course Canvas site.

Problem 4 - 4 points
Problem 4 is correctly answering the "HW 10 - Problem 4 - Short-answer questions focusing on assignment
statements" on the course Canvas site.

Homework Program Setup for Problems 5 onward
For EACH of the TWO programs involved in this homework:

• Copy the contents of the 111template.cpp, posted on the course Canvas site and on the public course
web site, into a file within the CS50 IDE (at https:/cs50.dev/) named as specified in Problem 5 and
Problem 8.

• See the comment that has by: and last modified: ?

– START that comment with: CS 111 - HW 10

– Then put your name after by: , and today's date after last modified: .

– For example:
/*---
 CS 111 - HW 10
 by: Your Name
 last modified: 2024-11-18
---*/

CS 111 - Homework 10 p. 3 of 6

Problem 5 - function coin_worth - 17 points
Problems 5 through 7 will all be in a single file named 111hw10.cpp.

In the "first main.cpp template" you pasted into your 111hw10.cpp, find the comment:
/*--- PUT YOUR SIGNATURES, PURPOSES, TESTS, and FUNCTION DEFINITIONS HERE ---*/

AFTER this comment -- but BEFORE the function header for the function named main -- type a blank
link, and then type the comment:
/*===
 Problem 5
===*/

The purpose of this problem is to provide more practice with switch statements.

Assume that coins are represented as follows:

• 'Q' or 'q' -- quarter

• 'D' or 'd' -- dime

• 'N' or 'n' -- nickel

• 'C' or 'c' -- cent

Use the design recipe to design a C++ function coin_worth that expects a character representing a coin,
and uses a C++ switch statement to return the decimal worth of that coin (for example, a cent is worth
0.01). If it receives any character besides those noted above, it should return a worth of 0.0.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for coin_worth.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– At least how many tests, covering at least which cases, are needed for coin_worth?

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 6 - function compute_it - 17 points
After your function for Problem 5, type a blank link, and then type the comment:
/*===
 Problem 6
===*/

This problem's purpose is to provide still more practice with the C++ switch statement.

Fun fact: the C++ cmath library has a function pow that expects two double arguments and returns the
result of raising the first argument to the power given by the second argument. That is, pow(2.0, 3.0)
gives you the result of raising 2.0 to the power 3.0, and so results in 2.0 * 2.0 * 2.0 == 8.0.

Consider: the char expression'+' cannot be used to add two numbers together in C++. But -- if you were
given that char expression, and two numbers, you could write expressions and statements that would see if
the given char expression was a '+', and if that is so, then it could add those numbers together using a
proper + operator.

Use the design recipe to develop a C++ function compute_it that indeed expects an operator expressed as

CS 111 - Homework 10 p. 3 of 6

Problem 5 - function coin_worth - 17 points
Problems 5 through 7 will all be in a single file named 111hw10.cpp.

In the "first main.cpp template" you pasted into your 111hw10.cpp, find the comment:
/*--- PUT YOUR SIGNATURES, PURPOSES, TESTS, and FUNCTION DEFINITIONS HERE ---*/

AFTER this comment -- but BEFORE the function header for the function named main -- type a blank
link, and then type the comment:
/*===
 Problem 5
===*/

The purpose of this problem is to provide more practice with switch statements.

Assume that coins are represented as follows:

• 'Q' or 'q' -- quarter

• 'D' or 'd' -- dime

• 'N' or 'n' -- nickel

• 'C' or 'c' -- cent

Use the design recipe to design a C++ function coin_worth that expects a character representing a coin,
and uses a C++ switch statement to return the decimal worth of that coin (for example, a cent is worth
0.01). If it receives any character besides those noted above, it should return a worth of 0.0.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for coin_worth.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

– At least how many tests, covering at least which cases, are needed for coin_worth?

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 6 - function compute_it - 17 points
After your function for Problem 5, type a blank link, and then type the comment:
/*===
 Problem 6
===*/

This problem's purpose is to provide still more practice with the C++ switch statement.

Fun fact: the C++ cmath library has a function pow that expects two double arguments and returns the
result of raising the first argument to the power given by the second argument. That is, pow(2.0, 3.0)
gives you the result of raising 2.0 to the power 3.0, and so results in 2.0 * 2.0 * 2.0 == 8.0.

Consider: the char expression'+' cannot be used to add two numbers together in C++. But -- if you were
given that char expression, and two numbers, you could write expressions and statements that would see if
the given char expression was a '+', and if that is so, then it could add those numbers together using a
proper + operator.

Use the design recipe to develop a C++ function compute_it that indeed expects an operator expressed as

CS 111 - Homework 10 p. 4 of 6

a char expression and two numbers, and uses a C++ switch statement to return the result of performing
the computation with the operator corresponding to that char expression to those two numbers. It should be
able to support at least:

'+' -- add the two numbers

'-' -- subtract the two numbers

'*' -- multiply the two numbers

'/' -- divide the two numbers

'^' -- raise the first number to the power of the second number (No, C++ does NOT have a ^ operator. But
 it does have that pow function mentioned earlier.)

compute_it should simply return 0.0 if called with any unsupported/unexpected char expression as the
operator char expression.

For example:

compute_it('+', 3.4, 1.6) == (3.4 + 1.6)
compute_it('-', 5, 2) == (5 - 2)

compute_it('?', 5.6, 8) == 0.0

(although, if necessary,
abs(compute_it('+', 3.4, 1.6) - 5.0) < 0.01

abs(compute_it('-', 5, 2) - 3.0) < 0.01

)

• OPTIONAL VARIATION:

You may ADD additional operator-char-expressions IF you would like. Note that you should add
additional tests as needed for your variation.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for compute_it.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 7 - function piggify_it - 17 points
After your function for Problem 6, type a blank link, and then type the comment:
/*===
 Problem 7
===*/

So you don't forget -- let's add a bit more practice with:

• if statement logic
• string class methods
• a function that calls another function
(So, note that this function does NOT need to use a switch statement!)

CS 111 - Homework 10 p. 4 of 6

a char expression and two numbers, and uses a C++ switch statement to return the result of performing
the computation with the operator corresponding to that char expression to those two numbers. It should be
able to support at least:

'+' -- add the two numbers

'-' -- subtract the two numbers

'*' -- multiply the two numbers

'/' -- divide the two numbers

'^' -- raise the first number to the power of the second number (No, C++ does NOT have a ^ operator. But
 it does have that pow function mentioned earlier.)

compute_it should simply return 0.0 if called with any unsupported/unexpected char expression as the
operator char expression.

For example:

compute_it('+', 3.4, 1.6) == (3.4 + 1.6)
compute_it('-', 5, 2) == (5 - 2)

compute_it('?', 5.6, 8) == 0.0

(although, if necessary,
abs(compute_it('+', 3.4, 1.6) - 5.0) < 0.01

abs(compute_it('-', 5, 2) - 3.0) < 0.01

)

• OPTIONAL VARIATION:

You may ADD additional operator-char-expressions IF you would like. Note that you should add
additional tests as needed for your variation.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for compute_it.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

Problem 7 - function piggify_it - 17 points
After your function for Problem 6, type a blank link, and then type the comment:
/*===
 Problem 7
===*/

So you don't forget -- let's add a bit more practice with:

• if statement logic
• string class methods
• a function that calls another function
(So, note that this function does NOT need to use a switch statement!)

CS 111 - Homework 10 p. 5 of 6

Step 1
Copy the opening comment with the signature, purpose, and bool test expressions and the function
definition for the Week 11 Lab Exercise's function is_vowel.

• Note: if you did not do the Week 11 Lab Exercise or you are not confident in your version of is_vowel,
you can e-mail me and ask for a version of is_vowel.

Now that is_vowel is in your 111hw10.cpp file, it can be used by another function that follows it in this
file.

Onward!
Consider:

• The now-available function is_vowel.

• The string method at, which expects a desired (0-based) position within a string, and returns a char
whose value is the character at that position in the calling string.

– If you had a parameter named word whose type is string, then this expression:

is_vowel(word.at(0)) == true

...SHOULD indeed be true if word begins with a vowel, right?

• And, consider the string method substr -- how can you use it to get a string containing all EXCEPT
the first letter of a given string?

Use the above and the design recipe to design a function piggify_it which is meant to be a
SIMPLIFIED variation on pig latin. Function piggify_it expects a word containing at least one
character, and:

• IF it starts with a vowel, it returns a string that is that word with -ay added to its end

• OTHERWISE, it returns a string that is that ALL BUT the first character in that word with - and its first
letter and ay added to its end.

• for example, piggify_it("orange") == "orange-ay"
piggify_it("moo") == "oo-may"

piggify_it("Harold") == "arold-Hay"

piggify_it("I don't read directions") == "I don't read directions-ay"

• OPTIONAL VARIATION:

You may design a more complex variation on this if you would like, as long as it still appropriately uses
function is_vowel. Note that you should add additional tests as needed for your variation.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for piggify_it.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

CS 111 - Homework 10 p. 5 of 6

Step 1
Copy the opening comment with the signature, purpose, and bool test expressions and the function
definition for the Week 11 Lab Exercise's function is_vowel.

• Note: if you did not do the Week 11 Lab Exercise or you are not confident in your version of is_vowel,
you can e-mail me and ask for a version of is_vowel.

Now that is_vowel is in your 111hw10.cpp file, it can be used by another function that follows it in this
file.

Onward!
Consider:

• The now-available function is_vowel.

• The string method at, which expects a desired (0-based) position within a string, and returns a char
whose value is the character at that position in the calling string.

– If you had a parameter named word whose type is string, then this expression:

is_vowel(word.at(0)) == true

...SHOULD indeed be true if word begins with a vowel, right?

• And, consider the string method substr -- how can you use it to get a string containing all EXCEPT
the first letter of a given string?

Use the above and the design recipe to design a function piggify_it which is meant to be a
SIMPLIFIED variation on pig latin. Function piggify_it expects a word containing at least one
character, and:

• IF it starts with a vowel, it returns a string that is that word with -ay added to its end

• OTHERWISE, it returns a string that is that ALL BUT the first character in that word with - and its first
letter and ay added to its end.

• for example, piggify_it("orange") == "orange-ay"
piggify_it("moo") == "oo-may"

piggify_it("Harold") == "arold-Hay"

piggify_it("I don't read directions") == "I don't read directions-ay"

• OPTIONAL VARIATION:

You may design a more complex variation on this if you would like, as long as it still appropriately uses
function is_vowel. Note that you should add additional tests as needed for your variation.

• Remember to include a signature, purpose, function header, examples/tests, and then completed
function body for piggify_it.

• Be sure to include your tests BOTH in a comment after your purpose statement, AND in main, as we have
done in class.

• IF you would like, you can also include one or more cout statements that include JUST an example call
of your function after these tests, so that you see the value those call(s) return.

CS 111 - Homework 10 p. 6 of 6

Problem 8 - an interactive front-end for a function - 17 points
We have mentioned in class that not all main functions are used just for testing other functions. Sometimes
they simply "control" a desired program.

Trying this out will be less awkward if it is done in a separate C++ program (with its own main function).

Copy the contents of the 111template.cpp, posted on the course Canvas site and on the public course
web site, into a file named 111hw10-prob8.cpp within the CS50 IDE (at https:/cs50.dev/).

This program will contain a program whose main function JUST serves as an interactive front end for
previously-designed function(s) (for example, as lab12.cpp's main function does).

CHOOSE ONE or MORE of your functions from Problems 5, 6, or 7 -- one or more of the functions
coin_worth, compute_it, or piggify_it.

• In 111hw10-prob8.cpp, paste in COPIES of your signature, purpose, bool test expressions, and
function definition for your chosen function(s).

– (In this case, do NOT copy over the tests from its testing main in 111hw10.cpp -- but DO copy over
the tests in its opening comment, after its purpose statement.)

– If you choose piggify_it, also copy over the signature, purpose, bool test expressions, and
function definition for is_vowel.

• Then, in project 111hw10-prob8.cpp's main function, do the following:

– Declare a local variable for each parameter of the function(s) you chose.

For example:

– if you choose coin_worth, you would declare one local variable able to hold a char
coin character

– if you choose compute_it, you would declare three local variables, one able to hold a
char operator and two able to hold double values

– if you choose piggify_it, you would declare one local variable able to hold a string
word to piggify

– For each parameter of the function(s) chosen, use cout to ask the user to enter in one of the values,

and read the entered quantity using cin and >> into the appropriate local variable.

– Then call your chosen function(s) appropriately, with the now-set local variables as its arguments, such
that something appropriate will be printed to the screen.

OPTIONAL VARIATIONS:

• Would you like to do more than the minimum requirements above? As long as you at least do what's
described above, you can add more statements to this main function.

• Would you like to call your chosen function(s) repeatedly? You may do so if you would like. How many
times will you repeat? How will you decide when to stop?

CS 111 - Homework 10 p. 6 of 6

Problem 8 - an interactive front-end for a function - 17 points
We have mentioned in class that not all main functions are used just for testing other functions. Sometimes
they simply "control" a desired program.

Trying this out will be less awkward if it is done in a separate C++ program (with its own main function).

Copy the contents of the 111template.cpp, posted on the course Canvas site and on the public course
web site, into a file named 111hw10-prob8.cpp within the CS50 IDE (at https:/cs50.dev/).

This program will contain a program whose main function JUST serves as an interactive front end for
previously-designed function(s) (for example, as lab12.cpp's main function does).

CHOOSE ONE or MORE of your functions from Problems 5, 6, or 7 -- one or more of the functions
coin_worth, compute_it, or piggify_it.

• In 111hw10-prob8.cpp, paste in COPIES of your signature, purpose, bool test expressions, and
function definition for your chosen function(s).

– (In this case, do NOT copy over the tests from its testing main in 111hw10.cpp -- but DO copy over
the tests in its opening comment, after its purpose statement.)

– If you choose piggify_it, also copy over the signature, purpose, bool test expressions, and
function definition for is_vowel.

• Then, in project 111hw10-prob8.cpp's main function, do the following:

– Declare a local variable for each parameter of the function(s) you chose.

For example:

– if you choose coin_worth, you would declare one local variable able to hold a char
coin character

– if you choose compute_it, you would declare three local variables, one able to hold a
char operator and two able to hold double values

– if you choose piggify_it, you would declare one local variable able to hold a string
word to piggify

– For each parameter of the function(s) chosen, use cout to ask the user to enter in one of the values,

and read the entered quantity using cin and >> into the appropriate local variable.

– Then call your chosen function(s) appropriately, with the now-set local variables as its arguments, such
that something appropriate will be printed to the screen.

OPTIONAL VARIATIONS:

• Would you like to do more than the minimum requirements above? As long as you at least do what's
described above, you can add more statements to this main function.

• Would you like to call your chosen function(s) repeatedly? You may do so if you would like. How many
times will you repeat? How will you decide when to stop?

	Deadline
	Purpose
	How to submit
	Important notes - 6 points
	Problem 1 - 8 points
	Problem 2 - 8 points
	Problem 3 - 6 points
	Problem 4 - 4 points
	Homework Program Setup for Problems 5 onward
	Problem 5 - function coin_worth - 17 points
	Problem 6 - function compute_it - 17 points
	Problem 7 - function piggify_it - 17 points
	Step 1
	Onward!

	Problem 8 - an interactive front-end for a function - 17 points

