
CS 111 - Homework 12 p. 1 of 7

CS 111 - Homework 12
Deadline
11:59 pm on Friday, December 13, 2024

Purpose
To practice with functions whose arguments include an array argument and its size, file output and file input,
and for loops and C++ shortcut operators.

How to submit
You complete Problems 1-3 on the course Canvas site (short-answer questions on various C++-related
topics), so that you can see if you are on the right track.

Then, you will submit your work for Problems 4 onward, in your files 111hw12.cpp and
111hw12-out.txt, along with the two file prob6-1.txt and prob6-2.txt that its program
creates, on the course Canvas site.

Turn in versions of your files early and often!

• Each time you submit a version of your 111hw12.cpp, IF that version currently compiles, also submit a
copy of the example output from running that latest version in file 111hw12-out.txt.

– Be careful that each submitted 111hw12-out.txt was created by running the compiled version of
the 111hw12.cpp file submitted along with it.

• Likewise, IF that version currently successfully creates the files prob6-1.txt and prob6-2.txt,
submit copies of those as well.

– And, be careful that each submitted prob6-1.txt and prob6-2.txt,were created by running the
compiled version of the 111hw12.cpp file submitted along with it.

Important notes
• NOTE: if you are just adding statements to a main function, the usual design recipe steps are NOT

required. (They are, of course, required for all (non-main) functions that you design/define.)

• IF you would like: FEEL FREE to include additional couts of endl or spacing or headings between
testing calls of different problems if you would like to have more-readable program output!

• Remember that, for each function WITH side-effects:

– You ALSO need to DESCRIBE those side-effects in its purpose statement, in a "has the side-effects
of..." clause, along with describing what it "expects..." and what it "returns ...".

– You ALSO need to DESCRIBE the expected side-effects that should be seen as a result of each of its
function tests, BOTH along with its bool test expressions in the comment after its purpose statement
AND when running those tests in its testing main function.

– (See how the tests for function cheer are written in the Week 13 Lecture 1 posted examples, and how
the tests are written from function vertical in the Week 13 Lecture 2 posted examples.)

• Be careful to follow class style standards, including required class indentation.

– When in doubt, ASK, and/or follow the style you see in the posted class examples.

• You are still expected to follow the Design Recipe for all (non-main) functions that you design/define.

CS 111 - Homework 12 p. 1 of 7

CS 111 - Homework 12
Deadline
11:59 pm on Friday, December 13, 2024

Purpose
To practice with functions whose arguments include an array argument and its size, file output and file input,
and for loops and C++ shortcut operators.

How to submit
You complete Problems 1-3 on the course Canvas site (short-answer questions on various C++-related
topics), so that you can see if you are on the right track.

Then, you will submit your work for Problems 4 onward, in your files 111hw12.cpp and
111hw12-out.txt, along with the two file prob6-1.txt and prob6-2.txt that its program
creates, on the course Canvas site.

Turn in versions of your files early and often!

• Each time you submit a version of your 111hw12.cpp, IF that version currently compiles, also submit a
copy of the example output from running that latest version in file 111hw12-out.txt.

– Be careful that each submitted 111hw12-out.txt was created by running the compiled version of
the 111hw12.cpp file submitted along with it.

• Likewise, IF that version currently successfully creates the files prob6-1.txt and prob6-2.txt,
submit copies of those as well.

– And, be careful that each submitted prob6-1.txt and prob6-2.txt,were created by running the
compiled version of the 111hw12.cpp file submitted along with it.

Important notes
• NOTE: if you are just adding statements to a main function, the usual design recipe steps are NOT

required. (They are, of course, required for all (non-main) functions that you design/define.)

• IF you would like: FEEL FREE to include additional couts of endl or spacing or headings between
testing calls of different problems if you would like to have more-readable program output!

• Remember that, for each function WITH side-effects:

– You ALSO need to DESCRIBE those side-effects in its purpose statement, in a "has the side-effects
of..." clause, along with describing what it "expects..." and what it "returns ...".

– You ALSO need to DESCRIBE the expected side-effects that should be seen as a result of each of its
function tests, BOTH along with its bool test expressions in the comment after its purpose statement
AND when running those tests in its testing main function.

– (See how the tests for function cheer are written in the Week 13 Lecture 1 posted examples, and how
the tests are written from function vertical in the Week 13 Lecture 2 posted examples.)

• Be careful to follow class style standards, including required class indentation.

– When in doubt, ASK, and/or follow the style you see in the posted class examples.

• You are still expected to follow the Design Recipe for all (non-main) functions that you design/define.

CS 111 - Homework 12 p. 2 of 7

– Remember the C++ "graphic design recipe helper" posted on the course Canvas site and on the public
course web site, "translating" the design recipe steps into C++ syntax.

– Remember, you will receive significant credit for the signature, purpose, header, and tests/test
expressions portions of your functions.

– Typically you'll get at least half-credit for a correct signature, purpose, header, and tests/test
expressions, even if your function body is not correct.

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your function body is
correct).

• Be especially careful to include at least two tests/test expressions for every function, including at least one
specific test/test expression for each "kind"/category of data, and (when there are boundaries) for
boundaries between data. You can lose credit for not doing so.

And, remember that tests for non-void functions should be:

– written as bool expressions within a non-main function's opening comment, after its purpose
statement, AND

– written within parentheses () within a cout in the testing main function.

• Please let me know if you have any questions or concerns about the above requirements.

Problem 1 - 9 points
Problem 1 is correctly answering the "HW 12 - Problem 1 - Short-answer questions on array parameters" on
the course Canvas site.

Problem 2 - 11 points
Problem 2 is correctly answering the "HW 12 - Problem 2 - Short-answer questions on file input/output" on
the course Canvas site.

Problem 3 - 9 points
Problem 3 is correctly answering the "HW 12 - Problem 3 - Short-answer questions on for loops and C++
shortcut operators" on the course Canvas site.

• Note: we will be discussing these in class on Tuesday, December 10, and the Week 15 Readings links (now
posted on Canvas and on the public course web site) has links to readings about these, if you want to
complete this question before Tuesday December 10.

Homework Program Setup for Problems 4 onward
• Copy the contents of the file 111template.cpp, posted on the course Canvas site and on the public

course web site, into a file named 111hw12.cpp within the CS50 IDE (at https://cs50.dev/).

• See the comment that has by: and last modified: ?

– START that comment with: CS 111 - HW 12

– Then put your name after by: , and today's date after last modified: .

– For example:
/*---
 CS 111 - HW 12
 by: Your Name

CS 111 - Homework 12 p. 2 of 7

– Remember the C++ "graphic design recipe helper" posted on the course Canvas site and on the public
course web site, "translating" the design recipe steps into C++ syntax.

– Remember, you will receive significant credit for the signature, purpose, header, and tests/test
expressions portions of your functions.

– Typically you'll get at least half-credit for a correct signature, purpose, header, and tests/test
expressions, even if your function body is not correct.

– (and, you'll lose at least half-credit if you omit these or do them poorly, even if your function body is
correct).

• Be especially careful to include at least two tests/test expressions for every function, including at least one
specific test/test expression for each "kind"/category of data, and (when there are boundaries) for
boundaries between data. You can lose credit for not doing so.

And, remember that tests for non-void functions should be:

– written as bool expressions within a non-main function's opening comment, after its purpose
statement, AND

– written within parentheses () within a cout in the testing main function.

• Please let me know if you have any questions or concerns about the above requirements.

Problem 1 - 9 points
Problem 1 is correctly answering the "HW 12 - Problem 1 - Short-answer questions on array parameters" on
the course Canvas site.

Problem 2 - 11 points
Problem 2 is correctly answering the "HW 12 - Problem 2 - Short-answer questions on file input/output" on
the course Canvas site.

Problem 3 - 9 points
Problem 3 is correctly answering the "HW 12 - Problem 3 - Short-answer questions on for loops and C++
shortcut operators" on the course Canvas site.

• Note: we will be discussing these in class on Tuesday, December 10, and the Week 15 Readings links (now
posted on Canvas and on the public course web site) has links to readings about these, if you want to
complete this question before Tuesday December 10.

Homework Program Setup for Problems 4 onward
• Copy the contents of the file 111template.cpp, posted on the course Canvas site and on the public

course web site, into a file named 111hw12.cpp within the CS50 IDE (at https://cs50.dev/).

• See the comment that has by: and last modified: ?

– START that comment with: CS 111 - HW 12

– Then put your name after by: , and today's date after last modified: .

– For example:
/*---
 CS 111 - HW 12
 by: Your Name

CS 111 - Homework 12 p. 3 of 7

 last modified: 2024-12-09
---*/

Problem 4 - function count_names
This problem's purpose is to provide practice with a function whose parameters include an array and its size
along with another parameter, and does not happen to have side-effects.

In the "first main.cpp template" you pasted into your 111hw12.cpp, find the comment:
/*--- PUT YOUR SIGNATURES, PURPOSES, TESTS, and FUNCTION DEFINITIONS HERE ---*/

AFTER this comment -- but BEFORE the function header for the function named main -- type a blank
link, and then type the comment:
/*===
 Problem 4
===*/

Using the design recipe, design a function count_names that expects a name of interest, an array of
names, and how many names are in that array, and returns how many times the given name of interest
appears in the given array.

• Since count_names has an array argument, you'll also need to include declarations for the array
arguments in your tests, as we did for Week 14's in-class example functions sum_array and
get_smallest.

That is, for EACH of its tests after the function's purpose statement:

– give the declaration for an example argument array, and then a bool expression including an example
call compared to what it should return

• Include at least three tests for count_names:

– one in which the given name of interest does NOT happen to appear in the given array of names

– one in which the given name of interest appears exactly ONCE in the given array of names

– one in which the given name of interest appears MORE than once in the give array of names

Problem 5 - function bar_chart
The purpose of this problem is to write yet-another function whose parameters include an array and its size,
but this time it happens to have side-effects.

After your function for Problem 4, type a blank link, and then type the comment:
/*===
 Problem 5
===*/

You are again going to make use of Week 13 Lab Exercise function starline in another problem's
function.

Problem 5 - Step 1
Copy the opening comment with the signature, purpose, bool test expressions and side-effect descriptions,
and the function definition for Week 13 Lab Exercise's function starline.

• Note: if you did not do the Week 13 Lab Exercise or you are not confident in your version of starline,
you can e-mail me and ask for a version of starline.

CS 111 - Homework 12 p. 3 of 7

 last modified: 2024-12-09
---*/

Problem 4 - function count_names
This problem's purpose is to provide practice with a function whose parameters include an array and its size
along with another parameter, and does not happen to have side-effects.

In the "first main.cpp template" you pasted into your 111hw12.cpp, find the comment:
/*--- PUT YOUR SIGNATURES, PURPOSES, TESTS, and FUNCTION DEFINITIONS HERE ---*/

AFTER this comment -- but BEFORE the function header for the function named main -- type a blank
link, and then type the comment:
/*===
 Problem 4
===*/

Using the design recipe, design a function count_names that expects a name of interest, an array of
names, and how many names are in that array, and returns how many times the given name of interest
appears in the given array.

• Since count_names has an array argument, you'll also need to include declarations for the array
arguments in your tests, as we did for Week 14's in-class example functions sum_array and
get_smallest.

That is, for EACH of its tests after the function's purpose statement:

– give the declaration for an example argument array, and then a bool expression including an example
call compared to what it should return

• Include at least three tests for count_names:

– one in which the given name of interest does NOT happen to appear in the given array of names

– one in which the given name of interest appears exactly ONCE in the given array of names

– one in which the given name of interest appears MORE than once in the give array of names

Problem 5 - function bar_chart
The purpose of this problem is to write yet-another function whose parameters include an array and its size,
but this time it happens to have side-effects.

After your function for Problem 4, type a blank link, and then type the comment:
/*===
 Problem 5
===*/

You are again going to make use of Week 13 Lab Exercise function starline in another problem's
function.

Problem 5 - Step 1
Copy the opening comment with the signature, purpose, bool test expressions and side-effect descriptions,
and the function definition for Week 13 Lab Exercise's function starline.

• Note: if you did not do the Week 13 Lab Exercise or you are not confident in your version of starline,
you can e-mail me and ask for a version of starline.

CS 111 - Homework 12 p. 4 of 7

Now that starline is in your 111hw12.cpp file, it can be used by another function that follows it in this
file.

Problem 5 - Onward!
Recall that starline expects the number of asterisks/stars to output, and it returns that number, but also
has the side-effect of printing that many asterisks on one line to the screen (if <=0, no stars are output).

You could use this to create a kind of horizontal bar chart, calling starline for each of a set of values.
And what is an array but a set of values?

Using the design recipe, design a C++ function bar_chart that expects an array of integers and its size,
has the side-effect of printing to the screen a horizontal bar chart with the help of starline, printing a line
of *'s the length of each array value, and returns the total number of asterisks printed in the entire chart.

• For full credit, this function must appropriately call and use starline

For example, for:
const int NUM_MSRS = 7;
int measures[NUM_MSRS] = {3, 1, 6, 2, 8, 4, 5};

bar_chart(measures, NUM_MSRS) == 29

...and has the side-effect of causing the following to be printed to the screen:

*

**

• And, since bar_chart has side-effects, your tests for bar_chart after its purpose statement should
INCLUDE a description of the expected side effects for each testing call.

Since bar_chart has an array argument, you'll also need to include declarations for the array arguments
in your tests, as we did for Week 14's in-class functions sum_array and get_smallest.

So, for EACH of its tests after the function's purpose statement:

– give the declaration for an example argument array, an example call, and what should be printed to the
screen for that example call.

And the running versions of those tests in your main function should print out a DESCRIPTION of what
side-effects should be seen.

That is, for EACH of its tests to be run in main:

– it should first print a message saying that what follows should be a bar chart with rows of length
<num>, <num> ... and <num>, followed by true,

– and then put that example/test in its own separate cout statement, such that the result of that test will
be printed on its own line.

CS 111 - Homework 12 p. 4 of 7

Now that starline is in your 111hw12.cpp file, it can be used by another function that follows it in this
file.

Problem 5 - Onward!
Recall that starline expects the number of asterisks/stars to output, and it returns that number, but also
has the side-effect of printing that many asterisks on one line to the screen (if <=0, no stars are output).

You could use this to create a kind of horizontal bar chart, calling starline for each of a set of values.
And what is an array but a set of values?

Using the design recipe, design a C++ function bar_chart that expects an array of integers and its size,
has the side-effect of printing to the screen a horizontal bar chart with the help of starline, printing a line
of *'s the length of each array value, and returns the total number of asterisks printed in the entire chart.

• For full credit, this function must appropriately call and use starline

For example, for:
const int NUM_MSRS = 7;
int measures[NUM_MSRS] = {3, 1, 6, 2, 8, 4, 5};

bar_chart(measures, NUM_MSRS) == 29

...and has the side-effect of causing the following to be printed to the screen:

*

**

• And, since bar_chart has side-effects, your tests for bar_chart after its purpose statement should
INCLUDE a description of the expected side effects for each testing call.

Since bar_chart has an array argument, you'll also need to include declarations for the array arguments
in your tests, as we did for Week 14's in-class functions sum_array and get_smallest.

So, for EACH of its tests after the function's purpose statement:

– give the declaration for an example argument array, an example call, and what should be printed to the
screen for that example call.

And the running versions of those tests in your main function should print out a DESCRIPTION of what
side-effects should be seen.

That is, for EACH of its tests to be run in main:

– it should first print a message saying that what follows should be a bar chart with rows of length
<num>, <num> ... and <num>, followed by true,

– and then put that example/test in its own separate cout statement, such that the result of that test will
be printed on its own line.

CS 111 - Homework 12 p. 5 of 7

Problem 6 - function array_to_file
The purpose of this problem is to write another function whose parameters include an array and its size, and
which also happens to involve writing to a file.

(And, its writing to a file happens from a non-main function -- just to make it clear that file i/o does not
happen ONLY from main functions!)

In your file 111hw12.cpp:

• Near the top of your file 111hw12.cpp, add a #include for the fstream standard library, so you can
use it here:

#include <cstdlib>
#include <iostream>
#include <string>
#include <cmath>
#include <fstream>
using namespace std;

• Then, after your function for Problem 5, type a blank link, and then type the comment:
/*===
 Problem 6
===*/

• Using the design recipe, design a function array_to_file that:

– expects an array of strings, its size, and the name of a file,

– has the side-effect of writing the contents of that given array to a file with that given file name, one
array value per line,

– and returns the number of lines written to that file.

• In the part of your main that is testing array_to_file, you should:

– call array_to_file at least TWICE,

– one time writing an array to the file prob6-1.txt, and

– one time writing a different-sized array to the file prob6-2.txt, and

– each time including cout statements DESCRIBING what should be written to each of the files as its
side-effect, followed by putting the example/test call in its own separate cout statement, such that the
result of that test will be printed on its own line.

Problem 7 - function vertical_file
The purpose of this problem is to practice reading everything from a file and doing something with it, making
use of a while loop not controlled by a counter variable.

(And, its reading from a file happens from a non-main function -- again, just to make it clear that file i/o
does not happen ONLY from main functions!)

Problem 7 - fun fact: how to read every line from a file using a while loop
If you have:

• declared and opened an input file stream, for example my_fin,

• and you want to read every line from the file that stream is opened on into a string variable, for example

CS 111 - Homework 12 p. 5 of 7

Problem 6 - function array_to_file
The purpose of this problem is to write another function whose parameters include an array and its size, and
which also happens to involve writing to a file.

(And, its writing to a file happens from a non-main function -- just to make it clear that file i/o does not
happen ONLY from main functions!)

In your file 111hw12.cpp:

• Near the top of your file 111hw12.cpp, add a #include for the fstream standard library, so you can
use it here:

#include <cstdlib>
#include <iostream>
#include <string>
#include <cmath>
#include <fstream>
using namespace std;

• Then, after your function for Problem 5, type a blank link, and then type the comment:
/*===
 Problem 6
===*/

• Using the design recipe, design a function array_to_file that:

– expects an array of strings, its size, and the name of a file,

– has the side-effect of writing the contents of that given array to a file with that given file name, one
array value per line,

– and returns the number of lines written to that file.

• In the part of your main that is testing array_to_file, you should:

– call array_to_file at least TWICE,

– one time writing an array to the file prob6-1.txt, and

– one time writing a different-sized array to the file prob6-2.txt, and

– each time including cout statements DESCRIBING what should be written to each of the files as its
side-effect, followed by putting the example/test call in its own separate cout statement, such that the
result of that test will be printed on its own line.

Problem 7 - function vertical_file
The purpose of this problem is to practice reading everything from a file and doing something with it, making
use of a while loop not controlled by a counter variable.

(And, its reading from a file happens from a non-main function -- again, just to make it clear that file i/o
does not happen ONLY from main functions!)

Problem 7 - fun fact: how to read every line from a file using a while loop
If you have:

• declared and opened an input file stream, for example my_fin,

• and you want to read every line from the file that stream is opened on into a string variable, for example

CS 111 - Homework 12 p. 6 of 7

next_line,

• you can do so -- using a sufficiently-new C++ compiler -- using:

 while (getline(my_fin, next_line))
 {
 desired actions for each line probably using just-read next_line;
 ...
 }

 my_fin.close();

– (this works because, for a sufficiently-new C++ compiler, function getline returns true if reading
a line succeeds, and returns false if reading a line fails -- so this loop repeats until all the lines of a
file have been read.)

After your function for Problem 6, type a blank link, and then type the comment:
/*===
 Problem 7
===*/

Remember function vertical, from Week 13 Lecture 2?

Problem 7 - Step 1
Copy the opening comment with the signature, purpose, bool test expressions and side-effect descriptions,
and the function definition for Week 13 Lecture 2's function vertical.

Now that vertical is in your 111hw12.cpp file, it can be used by another function that follows it in this
file.

Problem 7 - Onward!
Then, using the design recipe, write a function vertical_file that expects the name of a file, has the
side-effects of reading each line in that file, calling function vertical for the line read, and then printing a
newline character to the screen, and returns the number of lines read from that file.

(Hint:

• Even though we don't need a count variable to control this loop, we can still have a count variable to count
how many times we end up calling vertical.)

For example, if you had a little file lookity.txt that contains:
oh
to demo
whee!

then:
vertical_file("lookity.txt") == 3

and has the side effect of printing to the screen
o
h

t
o

d
e

CS 111 - Homework 12 p. 6 of 7

next_line,

• you can do so -- using a sufficiently-new C++ compiler -- using:

 while (getline(my_fin, next_line))
 {
 desired actions for each line probably using just-read next_line;
 ...
 }

 my_fin.close();

– (this works because, for a sufficiently-new C++ compiler, function getline returns true if reading
a line succeeds, and returns false if reading a line fails -- so this loop repeats until all the lines of a
file have been read.)

After your function for Problem 6, type a blank link, and then type the comment:
/*===
 Problem 7
===*/

Remember function vertical, from Week 13 Lecture 2?

Problem 7 - Step 1
Copy the opening comment with the signature, purpose, bool test expressions and side-effect descriptions,
and the function definition for Week 13 Lecture 2's function vertical.

Now that vertical is in your 111hw12.cpp file, it can be used by another function that follows it in this
file.

Problem 7 - Onward!
Then, using the design recipe, write a function vertical_file that expects the name of a file, has the
side-effects of reading each line in that file, calling function vertical for the line read, and then printing a
newline character to the screen, and returns the number of lines read from that file.

(Hint:

• Even though we don't need a count variable to control this loop, we can still have a count variable to count
how many times we end up calling vertical.)

For example, if you had a little file lookity.txt that contains:
oh
to demo
whee!

then:
vertical_file("lookity.txt") == 3

and has the side effect of printing to the screen
o
h

t
o

d
e

CS 111 - Homework 12 p. 7 of 7

m
o

w
h
e
e
!

• Do you see that Problem 6's output files prob6-1.txt and prob6-2.txt would work just fine as
inputs to this function? AND they should be here in the right folder, able to be reasonably called.

• Your tests for vertical_file can call vertical_file on these two files prob6-1.txt and
prob6-2.txt, then -- and, for each call, the main function should include cout statements
DESCRIBING what should be printed to the screen as its side-effect.

Make sure you submit your files prob6-1.txt and prob6-2.txt as well as your 111hw12.cpp and
111hw12-out.txt.

CS 111 - Homework 12 p. 7 of 7

m
o

w
h
e
e
!

• Do you see that Problem 6's output files prob6-1.txt and prob6-2.txt would work just fine as
inputs to this function? AND they should be here in the right folder, able to be reasonably called.

• Your tests for vertical_file can call vertical_file on these two files prob6-1.txt and
prob6-2.txt, then -- and, for each call, the main function should include cout statements
DESCRIBING what should be printed to the screen as its side-effect.

Make sure you submit your files prob6-1.txt and prob6-2.txt as well as your 111hw12.cpp and
111hw12-out.txt.

	Deadline
	Purpose
	How to submit
	Important notes
	Problem 1 - 9 points
	Problem 2 - 11 points
	Problem 3 - 9 points
	Homework Program Setup for Problems 4 onward
	Problem 4 - function count_names
	Problem 5 - function bar_chart
	Problem 5 - Step 1
	Problem 5 - Onward!

	Problem 6 - function array_to_file
	Problem 7 - function vertical_file
	Problem 7 - fun fact: how to read every line from a file using a while loop
	Problem 7 - Step 1
	Problem 7 - Onward!

