
Program by Design - Design Recipe - Version 1 p. 1

Program by Design - DESIGN RECIPE - VERSION 1
It is good practice to follow the Design Recipe for all functions that you write.

Step 1 - problem analysis and data definition
• Consider your problem; consider the kinds of data involved in your problem. Determine if you need

to define any new kinds of data, and develop data definitions to do so as applicable.

Step 2 - signature/purpose/header
• First develop a signature comment, including a nicely-descriptive name for your function, the types

of expressions it expects, and the type of expression is produces. For example,
; signature: rect-area: number number -> number

• Then develop a purpose comment, describing what the function expects and describing what it
produces. For example,

; purpose: expects the length and width of a rectangle,
; and produces the area of that rectangle

• Now write the function header, giving a good, descriptive name for each parameter variable. Use
... as a stub for the function body at this point.

Step 3 - develop specific examples/tests
• Now develop check-expect (or check-within, or other check- operation) expressions

expressing specific examples of your function that you devise before writing your function body.

– (These may be placed before or after your actual function definition, but you should create these
before writing the function body.)

– For example,

(check-expect (rect-area 3 4)
 12)

• How many check-expect expressions should you have? That is an excellent question, and does
depend on the situation.

– The basic rule of thumb is that you need a specific example/check- expression for each
"case" or category of data that may occur, and for each "boundary" between categories... and you
can always add more if you'd like!

Step 4 - decide which body template is appropriate
• Replace the ... that is currently your function body with an appropriate template, based on the

problem type.

Program by Design - Design Recipe - Version 1 p. 2

Step 5 - Develop/complete the function's body
• Either replace the ... that is currently your function body, or finish filling in/completing the body

template you developed in Step 4.

Step 6 - Run the tests
• Click the Run button! 8-)

• Note that you may include as many additional calls or tests of your function as you would like after
its definition.

	Step 1 - problem analysis and data definition
	Step 2 - signature/purpose/header
	Step 3 - develop specific examples/tests
	Step 4 - decide which body template is appropriate
	Step 5 - Develop/complete the function's body
	Step 6 - Run the tests

