
CIS 291 - Spring 2005
last modified: 3-31-05

Initial "UML" for binary_tree template class
adapted from Ch. 10, Savitch and Main, "Data Structures and Other Objects Using C++"

Template Class: binary_tree<Item>
/* a binary tree where each node contains an Item */

Member data and related details:
* contains elements of type value_type; this is set to be the value of template parameter Item
* has a size of size_t

* Each non-empty binary_tree instance always has a "current node". The location of the current node is
controlled by three member functions: shift_to_root, shift_left, and shift_right.

Constructors:
/* postcondition: creates an empty binary_tree instance (with no nodes) */
binary_tree();

Accessors and other constant member functions:
/* postcondition: returns the number of nodes in the binary_tree. */
size_t get_size() const;

/* postcondition: returns true if binary_tree is empty, and returns false otherwise */
bool is_empty() const;

/* precondition: size() > 0 */
/* postconditions: returns the data from the "current node", BUT the binary_tree is unchanged. */
Item retrieve() const;

/* postcondition: returns true if size() > 0 and the "current node" is the root */
bool is_root() const;

/* postcondition: returns true if size() > 0 and the "current node" is a leaf (has no children) */
bool is_leaf() const;

/* postcondition: returns true if size() > 0 and the "current node" has a parent */
bool has_parent() const;

/* postcondition: returns true if size() > 0 and the "current node" has a left child */
bool has_left_child() const;

/* postcondition: returns true if size() > 0 and the "current node" has a right child */
bool has_right_child() const;

Modifiers and other modifying member functions:
/* precondition: size() == 0 */
/* postconditions: the binary_tree now has one node (a root node) containing the specified entry. The new

root node is the "current node". */
void create_root(const Item& entry);

CIS 291 - Spring 2005
last modified: 3-31-05

/* preconditions: size() > 0, and has_left_child() == false */
/* postcondition: a left child has been added to the "current node", with the given entry as its value */
void add_left(const Item& entry);

/* preconditions: size() > 0, and has_right_child() == false */
/* postcondition: a right child has been added to the "current node", with the given entry as its value */
void add_right(const Item& entry);

/* preconditions: size() > 0, and has_left_child() == false */
/* postcondition: a left subtree has been added to the "current node", with the given tree as its value */
void add_left_subtree(binary_tree<Item>& left_subtree);

/* preconditions: size() > 0, and has_right_child() == false */
/* postcondition: a right subtree has been added to the "current node", with the given tree as its value */
void add_right_subtree(binary_tree<Item>& right_subtree);

/* precondition: size() > 0 */
/* postcondition: The data at the "current node" has been changed to the new entry */
void change(const Item& entry);

/* preconditions: size() > 0, and has_left_child() == true */
/* postcondition: the left subtree of the current node has been removed from the tree. */
void remove_left_subtree();

/* preconditions: size() > 0, and has_right_child() == true */
/* postcondition: the right subtree of the current node has been removed from the tree. */
void remove_right_subtree();

/* postconditions: the tree is empty (and so there is no "current node", either) */
void clear_tree();

/* precondition: size() > 0 */
/* postcondition: the "current node" is now the root of the tree. */
void shift_to_root();

/* precondition: has_left_child() == true */
/* postcondition: the "current node" has been shifted down to the left child of the old current node. */
void shift_left();

/* precondition: has_right_child() == true */
/* postcondition: the "current node" has been shifted down to the right child of the old current node. */
void shift_right();

/* preconditions: if !empty(), depth is the depth of the calling binary_tree instance. */
/* postconditions: if !empty, then the contents of the root and all of its descendants have been written to

cout with the << operator using a backward in-order traversal. Each node is indented four times its
depth. */

void print_tree(size_t depth);

