
CIS 291 - Exam #1 Study Suggestions p. 1
Spring 2005

CIS 291 Exam #1 - Study Suggestions

* last modified: 2-22-05

* The test covers through HW #5, the Week 7 Lab Exercise Exercise, and material through the 2-17-05
lecture/3-01-05 lab.

* Anything that has been covered in lecture is fair game;
* Anything covered in a course handout or course posting is fair game;
* Anything that has been covered in a lab exercise or homework assignment is ESPECIALLY fair game.

* But, these are some especially-significant topics to help you in your studying for the exam.

* You are responsible for being familiar with, and following, the course style guidelines.

* The exam will be closed-book and closed-notes, and you are expected to work individually.
* Test format: will likely be short answer, possibly with a smattering of multiple-choice questions.

* All you need to provide is a pen or a pencil;

* EXPECT to have to read and write C++ code, pseudocode, UML notation.

* note that you could definitely be given code and asked questions about it, as in the Week 6 Lab Exercise
(answering questions about the different sort implementations).

* the only aspect of namespaces that you are responsible for on this exam is that you need to use using
namespace std; after #include'ing standard libraries in modern, standard C++.

* data structures
* what is a data structure? an organized collection of data...

* what is an abstract data type (ADT)? a collection of data PLUS all of the operations for acting on that
data;

* What are some of the benefits of using a well-designed ADT class for a data structure within a
program?

* Be comfortable, too, with such terms as information hiding and abstraction.

* you should be able to read and use a data structure given a "pseudo-UML" diagram such as that given for
stack and queue in-lecture (and available from the course web page). You should be able to answer
questions based on reading it, and should be able to write code using such a class.

* phases of software development and program design recipe handouts
* be comfortable with the basic phases of software development as discussed in lecture; be comfortable

with the basic function design recipe discussed.

* especially: for a function,
1. figuring out what data is involved (data analysis),

2. then writing a CONTRACT,

3. then writing the HEADER corresponding to that contract (here, remember, we mean the first
line of the *implementation*/definition, NOT the prototype/declaration/what goes in the .h
file)

4. then writing the PURPOSE, INCLUDING the parameter names appropriately,



CIS 291 - Exam #1 Study Suggestions p. 2
Spring 2005

writing PRECONDITIONS and POSTCONDITIONS if called for,

5. then writing the EXAMPLES, actual example calles of the function, including what the
function returns or does as a result of that call,

6. and only THEN devising its algorithm, and then translating that algorithm into code.

* what is the course "syntax"/notation for a function contract? Given a non-main function or its
description, you should be able to write a contract using this syntax/notation.

* in this course, what should be incorporated into the Purpose: statement of a function that has parameters?

* what is a precondition? what is a postcondition? what are the expectations for these?
* you should be able to read and write assert statements to verify a function's preconditions (for

preconditions for which such tests are reasonable); you should know what happens when an assert's
condition is false.

* what goes in the Examples: section of a "regular" function's opening comment block, in this course?
How do we write these when the function returns, say, an int?

* when should you come up with specific examples for a function or method? (BEFORE you write it!)

* Given a function and/or its description, you should be able to write examples that adequately test it
(cover all major categories of input and boundaries between those categories).

* be comfortable reading and appropriately writing code using EXIT_SUCCESS and EXIT_FAILURE.
(remember the course conding standards regarding these.)

* should be able to read, write tester programs (testing main functions) as you have been doing in course
assignments.

* Lab and C++-related details
* how can you compile a C++ function on cs-server? how can you compile and link a C++ program on cs-

server?

* what should go in a .h file for a non-main function being written in its own file? How does another
function use a non-main function written in its own file?

* how can you redirect screen output to a file in UNIX?

* how should you declare a named constant in this course? (be familiar with both the syntax, its meaning,
and the course style standards for named constants)
* Within a class, how many "copies" of a thing declared to be static are there?

* stacks
* what is LIFO?

* you need to be comfortable with the stack ADT (and its pseudo-UML).

* what is a stack? what are the typical operations defined on stacks? how can a stack be used?

* in what kinds of situations is a stack appropriate? what are some typical applications of stacks?

* if I asked you to perform a sequence of pushes and pops on a stack, you should be able to simulate how it
would behave and what would result;



CIS 291 - Exam #1 Study Suggestions p. 3
Spring 2005

* how should you avoid popping from an empty stack?

* how can stacks be implemented? (right now, you should know of at least 2 different ways; we'll be
adding at least 2 more later...)

* you should be able to use the stack ADT in problem solutions; you also should be able to implement
stack operations in the different stack implementations discussed so far.

* how can you implement stacks using static arrays? using dynamic arrays?
* you should be able to compare/contrast these implementations; discuss their tradeoffs, big(O)

complexity for different operations using the different implementations, etc.

* queues
* what is FIFO?

* you need to be comfortable with the queue ADT (and its pseudo-UML).

* what is a queue? what are the typical operations defined on queues? how can a queue be used?

* in what kinds of situations is a queue appropriate? what are some typical applications of queues?

* if I asked you to perform a sequence of enqueues and dequeues on a queue, you should be able to
simulate how it would behave and what would result;

* how should you avoid dequeuing from an empty queue? what is queue underflow?

* how can queues be implemented? (you should know of at least 2 different ways; we'll be adding at least
2 more later...)

* you should be able to use the queue ADT in problem solutions; you also should be able to implement
queue operations in the different queue implementations discussed so far.

* how can you implement queues using static arrays? using dynamic arrays?
* you should be able to compare/contrast these implementations; discuss their tradeoffs, big(O)

complexity for different operations using the different implementations, etc.

* in an array-based implementation of a queue, what is rightward/downward drift? How can it be
avoided? (Or: what do we mean by a circular array? Why is it a useful approach in implementing
a queue?)
* hint: it involves modulo arithmetic, the % operator in C++...

* in each implementation, how can you distinguish between a full queue and an empty one?

* template classes
* you should be able to declare and instantiate an instance of a template class;

* given an instance of a template class header file and implementation file, you should be able to:

* read it and answer questions about it;

* modify it (including adding methods);

* write another template class using the provided one as a reference;



CIS 291 - Exam #1 Study Suggestions p. 4
Spring 2005

* why would one want to use a template class? How does a template class differ from a regular class?

* what has been our class practice for the suffixes for the two files involved in creating a template class?
What should be #include'd where?

* When is a template class compiled?

* if a program is to use a template class...
* ...what should it #include? (And what must that #include'd file #include?)
* ...how does it declare an instance of that class?
* ...how does it call a public member function for an instance of that class?
* ...how do you compile and link that program on cs-server?

* searching (sequential search, binary search, and hashing)
* sequential search and binary search

* you are responsible for knowing sequential search and binary search.

* you should be able to describe the basic algorithm for each; you should know their run-time
complexities.

* if code was given,you should be able to recognize which of the above is being implemented within
that code.

* (frankly, you should be able to code some version of sequential search at the drop of a hat...)

* you should be able to reason about variations on these basic algorithms

* hashes, hash tables, and hashing
* what is a hash function? What is a hash table? What is hashing?

* what does a hash function do? How is it used?
* what are some of the desired properties for a hash function? you should be able to implement a

simple hash function, and be able to assess its quality;
* what are some examples of hash functions/some examples of typical hash function

techniques?

* what are some typical operations defined on hash tables? how can a hash table be used?
* how are items inserted into a hash table? how are items retrieved from a hash table? What is the

average case time complexity for such insertion and deletion? what is the worst-case time
complexity for these operations (and when does it occur)?

* what particular typical "collection of things" operation is particularly inefficient when hashing is
used to implement that collection?

* Be comfortable with open-addressing (plain array-based hash table) collision-resolution techniques
such as linear probing, quadratic probing,double hashing, rehashing.
* what is meant by clustering? (primary and secondary clustering)
* why is clustering a problem?

* What is the significance of hash table size in hashing's performance, in general?
* what kind of characteristics are considered desirable for a hash table's size?

* in what kinds of situations is a hash table appropriate?
* what are some typical applications of hash tables?
* what operation is particular NOT so well-behaved when implementing a collection of items using a



CIS 291 - Exam #1 Study Suggestions p. 5
Spring 2005

hash table?

* need to be comfortable with array-based hash table implementations; need to be comfortable with
the concept of separate chaining/buckets-and-chaining hash table implementations
* I could ask you to implement array-based hashing; I will not ask you to implement buckets-

and-chaining at this point.

* you should be able to compare/contrast these implementations; discuss their tradeoffs, big(O)
complexity for different operations using the different implementations, etc.

* Given a hash function and a hash table implemented as an array of pointers to linked lists (that
is, implemented using separate chaining/buckets-and-chaining), could you show what
hashing would do for a collection of actions (insertions and deletions of specified values)?
Could you do so for a hash table implemented as an array (open addressing) using a given
collision strategy?

* need to be able to use a given hash table ADT or UML or interface to solve problems; you also
need to be able to implement (and reason about the big O complexity of) hash table operations in
the different hash table implementations.

* running time analysis
* what is big-O notation? What does it mean? How can it be useful?

* given a formula representing the number of steps that some algorithm requires for a problem of size n,
you should be able to give the big-O notation for such an algorithm.

* what is average-case run-time complexity? worst-case? best-case? What are the differences between
these?

* you should know (or be able to figure out) the run-time complexities for "simple" operations, and express
them using big-O notation;

* you should know (or be able to figure out) the average-, worst-, and best-case time complexities for:
* sequential search and binary search
* selection sort, insertion sort, bubblesort, merge sort, quicksort, and radix sort

* what phrase is equivalent to O(1)? to O(n)? to O(log n)? to O(n2)? to O(2n)?
* except for O(2n), you should be able to give an example of an algorithm that takes that average-case

running-time; you should be able to give an example of an algorithm that average-case running time
for O(n log n), also.

* (remember: in computer science, when log n is written, base 2 is assumed.)

* sorting
* you are responsible for knowing selection sort, insertion sort, bubblesort, merge sort, quicksort, and radix

sort

* you should be able to describe the basic algorithm for each; you should know their run-time complexities
(best-case, average-case, and worst-case)

* if code was given, you should be able to recognize which of the above is being implemented within that
code.

* you should be able to reason about variations on these basic algorithms (using bubblesort within
quicksort when the list size is sufficiently small, for example)


