
CIS 291 – HW #2 p. 1
Spring 2005

CIS 291 – Data Structures in C++ - Spring 2005
Homework #2

HW #2 due: Thursday, February 3rd, BEGINNING of class

Purpose:

Make use of abstract data types --- here, stack --- given UML depictions of those ADT s and implementations of those‛
ADT s.‛
How this will be turned in:

When you wish to submit one or more files, call:

~st10/291submit

...from the cs-server prompt while in the directory where the files to submit reside. It will prompt you for the number of the
homework and for the names of the files you wish to submit. Only files submitted using this tool by the deadline will be
accepted for credit.

[IF YOU ENCOUNTER ANY PROBLEMS ACCESSING cs-server, LET ME KNOW A.S.A.P. This is even worthy of a
brief phone message to 825-7727 (my home phone), so I can contact the lab administrator as promptly as possible. It is
another example of the importance of starting assignments early. One more comment in this regard: what if cs-server has a
burp early in the week? I would strongly advise beginning your development on paper, or on redwood or sorrel (whose g++
versions may be slightly older, so be careful!) or Dev-C++, and then using sftp to transfer your work-in-progress to cs-
server when you are able.]

[Remember the scheduled power shutdown for NHW and NHE this weekend, also; you should have received an e-mail
message about it.]

Homework Problems:

NOTE: for all course programming, you are expected to follow the course coding standards as described in lecture and lab,
and as demonstrated in posted course examples. You are also expected to follow the style demonstrated in the posted course
templates.

Also, some friendly C++ reminder/hints:
* remember, when you use the type string, you need to #include <string>...

* while you do not usually need #include s in .h files, you do if one of the parameter types in the prototype declaration‛
needs it. So, if you have a string parameter, you ll need #include‛ <string> (and using namespace std!) in the .h file,
too.

Next page: a pseudo-UML depiction of the stack ADT, close to what was described in lecture:

CIS 291 – HW #2 p. 2
Spring 2005

Initial "UML" for stack class (revised 1-27-05)
adapted from Ch. 7, Savitch and Main, "Data Structures and Other Objects Using C++"

Template Class: stack
/* a collection of items such that entries can be inserted and removed at only one end (called the top). */

Member data and related details:
/* contains elements of type value_type; this is set to be the value of template parameter Item

Constructors:
/* postcondition: creates an empty stack instance */
stack();

Accessors and other constant member functions:
/* postcondition: returns true if stack is empty, and returns false otherwise */
bool is_empty() const;

/* precondition: is_empty() == false */
/* postcondition: returns the value of the top item of the stack, BUT the stack is unchanged. */
Item get_top() const;

Modifiers and other modifying member functions:
/* postcondition: a new copy of entry has been pushed onto the (top of the) stack */
void push(const Item& entry);

/* precondition: is_empty() == false */
/* postcondition: the top item of the stack has been removed, and a reference to it is returned */
Item& pop();

1. You should copy the following files from the course web page (also from Homeworks and Handouts , where you‟ ‟
grabbed this handout from): stack.h, stack.template.

Notice how that second file ends with .template instead of with .cpp? That s because it is an implementation of a‛
template class instead of a normal C++ class. We ll have to talk about implementing template classes, because there‟ ‟ ‛
are some syntax issues to discuss to be able to write them. However, once written, template classes are a breeze to use!

The point of a template class is that, for some situations, you have a whole family of classes that are really the same,‟ ‟
except for which type they involve. (For example, consider a list of strings, a list of ints, a list of lists...) A template
class lets you write that class but defer the specification of which type is involved in that class until compile-time. You
can specify a particular type when you use a class, and use different types for different instances of the same class. Or,
if I have a stack template class, I can write a single stack template class, and use it to create an int stack here, and a
string stack there --- and these two instances could even be within the same program, using the same stack template
class. This is convenient!

SO --- given a template class george, that expects a single template parameter. If I d like that template parameter to‛
be int for george instance numeric_g1 and to be char for george instance letter_g2, then I just put the desired type (for
the template parameter) in angle brackets after the template class name in the declaration:

george<int> numeric_g1;
george<char> letter_g2;

Then, I just call the methods of numeric_g1 and letter_g2 in the normal way.

CIS 291 – HW #2 p. 3
Spring 2005

Or, if you prefer, look at the implementation of reverseString.cpp given on the course web page, under In-class‟
examples . It uses‟ stack.h and stack.template, and you can see how I declared charStack:

stack<char> charStack;

Then charStack.is_empty() lets me see if charStack is empty, etc.!

Note, too, that when you are using the C++ string type, you need to #include <string>.

To make sure that you have correctly copied over stack.h and stack.template, copy over, also, reverseString.cpp.

* Write an appropriate header file (.h file) for reverseString (using the appropriate posted course template); this
file must be named reverseString.h

* Write an appropriate testing main function, in its own file test_reverseString.cpp, for reverseString (using the
appropriate posted course template) to run all of the examples given in reverseString s opening comment block.‛
You may add additional tests if you wish, also.

* Another oddness with template classes: for a regular class, when it is used in another, you need its .o file in the
linking stage; but a template class is included with the .h file for the template class, and so ends up really being
compiled when the file using it is compiled. So, even though:

reverseString.cpp uses stack.h;
test_reverseString.cpp uses reverseString.h;

...a similar sequence of compilations as we saw in HW #1 and the Week 1 Lab Exercise works here, too:

g++ -c reverseString.cpp
g++ -c test_reverseString.cpp
g++ -o test_reverseString test_reverseString.cpp reverseString.o // note: templates are weird in that

// they are not compiled until the
// program they are used in is compiled!

* When all is well compiling-wise, run and debug your test_reverseString until you are satisfied with its output.
Then redirect its output into a file for turning in:

test_reverseString > test_reverseString_output

For this problem, you will turn in your final versions of test_reverseString.cpp and test_reverseString_output .

2. Now that you know you have a working stack implementation available, let s use it in another application.‛
There is a notation known as reverse Polish notation (RPN); I believe that is is named after a Polish mathematician.
Some calculators use it (or a version of it); its advantage is that parentheses are not needed to disambiguate
expressions.

Basically, instead of putting the operator in between the two operands --- in-fix --- you write it after the two‟ ‟
operands. That is,
instead of... you d write:‛
2+3 2 3 +
(2+3)-(8*7) 2 3 + 8 7 * -
(2 + (3-8)) * 7 2 3 8 - + 7 *
2 + ((3-8) * 7) 2 3 8 – 7 * +

It turns out that an expression written in this form is quite easy to calculate with a stack: every time you see a number,
you push it on the stack. Every time you see an operator, you pop the top two numbers off of the stack, perform the
operation upon them, and push the result back onto the stack. When the expression is completely consumed, only one
item should remain on the stack: the computed result.

CIS 291 – HW #2 p. 4
Spring 2005

We re going to practice this in a very restricted setting.‛
Write a function rpn_compute, in file rpn_compute.cpp. This function expects a C++ string as input, and will only
behave reasonably if this string:

* contains only the digits 0-9, or the characters +, -, *, or /.
* contains a legal (well-formed) RPN expression for consisting of single-digit numbers and operators only. [This‟ ‟

restriction is intended to simplify the problem --- you are not being asked to parse the input, or to figure out that
12 3 means twelve and three or that 1 23 means one and twenty-three. Instead, you ll see something like‛ 12+ and
be able to assume that it means the sum of one and two.]

And, it should return the computed result, or -1 if, at any time along the way, it runs into problems.

(Hint: C++ s‛ string library includes such nifty functions as isdigit which, when given a char as an argument, returns
true if that char is a digit character. Also, remember that if ch is a char that happens to be a digit (e.g., 6), then you‛ ‛
can get the integer corresponding to that character by subtracting it from the character 0 , since C++ char s are weird‛ ‛ ‛
int s... 8-) That is, 6 - 0 == 6)‛ ‛ ‛ ‛ ‛
You are not required to test for an illegal input string; you do need to handle the major categories of possible legal‟ ‟ ‟ ‟
inputs, however.

You will turn in rpn_compute.cpp, rpn_compute.h, test_rpn_compute.cpp, and the results of running
test_rpn_compute redirected to a file named test_rpn_compute_output.

Note that, when you are finished with this homework, you will be submitting 6 files:

test_reverseString.cpp, test_reverseString_output and
rpn_compute.cpp, rpn_compute.h, test_rpn_compute.cpp, test_rpn_compute_output

