CIS 291 - HW #3 p. 1
Spring 2005

CIS 291 - Data Structures in C++ - Spring 2005
Homework #3
HW #3 due: Thursday, February 10th, BEGINNING of class

Purpose:
Implement fixed-capacity versions of the stack and queue ADT's, and use them in a function.

How this will be turned in:
Use ~st10/291submit, called from the directory on cs-server where the files you wish to submit are
stored.

Homework Problems:

IMPORTANT: PUT THE FILES FOR THIS ASSIGNMENT IN A DIFFERENT DIRECTORY THAN
USED FOR HW #2 or for the WEEK 3 LAB EXERCISE. We are deliberately creating different
versions of files with the SAME NAMES as in those previous activities (for easier switch-ability later
on), and I want you to be able to RE-USE EITHER of the versions later on in the semester.

On the course web page, you will find pseudo-UML descriptions of a fixed-capacity stack and queue
(these have a 2-3-05 revision date).

1. *Carefully* study the pseudo-UML for the 2-3-05 fixed-capacity stack. You'll see some new
operations, as well as modifications of the pre-existing operations.

IN A NEW DIRECTORY, create new versions of stack.h and stack.template that use a static
array implementation to precisely implement this fixed-capacity UML.

Part of what I am looking for here is attention to detail, in two senses:

* first, if you are asked (as part of a team) to implement a particular UML, everyone else on that
team is depending on you to implement it precisely as described. Their code may fail if you
vary from that agreed-upon interface in any way. Therefore, you will lose credit for any
deviation from the provided pseudo-UML in your implementation.

* second, I fully expect that you will likely start with the dynamic-array implementation provided
as part of HW #2's stack, especially because it is your first example of a template class
implementation, However, when you modify such existing code, it is important to remove
everything that it not pertinent to the new version, change now-inappropriate or now-
misleading identifier names and comments appropriately, etc. Therefore, you will lose credit
for any such “artifacts” remaining in your revised version.

Note that, since you are to be creating a static array implementation, you do not need to explicitly
implement a copy constructor or destructor, and in fact it is a homework specification for this
particular assignment that these not be explicitly implemented for this particular homework
assignment.

Be careful --- note how the template class methods are implemented in the dynamic array
stack.template file (for example, how each template class method needs to begin with a template
<typename Item> line, and instead of stack::, you need stack<Item>:: .) Another point to note:
when you refer to a named constant from a template class in the implementation, it, too, needs to be
preceded by stack<Item>:: --- that's why, in the dynamic array implementation of stack's push

CIS 291 - HW #3 p.2
Spring 2005

method, you saw an instance of stack<Item>::INCR_AMT .

When you are ready, create test_stack.cpp to test your new implementation. Make sure that the
constructor and all of the methods are attempted, and their results appropriately verified. When you
are satisfied with it, redirect its output into a file for turning in:

test stack > hw3_stack output

For this problem, you will turn in your final versions of stack.h, stack.template, test_stack.cpp,
and hw3_stack output.

2. “*Carefully* study the pseudo-UML for the 2-3-05 fixed-capacity queue. You'll see some new
operations, as well as modifications of the pre-existing operations.

IN A NEW DIRECTORY, create new versions of queue.h and queue.template that use a static
array implementation to precisely implement this fixed-capacity UML.

The same attention to detail is expected here as for problem #1, and, likewise, your solution is
expected to not explicitly implement a copy constructor nor a destructor.

Remember about needing template <typename Item> and queue<Item>:: in queue.template,
too.

When you are ready, create test_queue.cpp to test your new implementation. Make sure that the
constructor and all of the methods are attempted, and their results appropriately verified. When you
are satisfied with it, redirect its output into a file for turning in:

test queue > hw3 queue_output

For this problem, you will turn in your final versions of queue.h, queue.template, test queue.cpp,
and hw3_queue_output.

3. Now, some stack-and-queue-in-tandem practice for your new fixed-capacity implementations.

We discussed (during lecture in Week #2) how one can recognize a palindrome string using a stack
and a queue: grab each character in the string, and if it is a letter between a-z or A-Z convert it to
lowercase and push it on the stack and enqueue it in the queue. Then, while the stack and queue are
not empty, pop and dequeue (respectively) comparing the letters. If the string is a palindrome, then
the popped/dequeued characters will always match --- if they ever do NOT match, then you know
the original string was not a palindrome.

Write a function is_palindrome that uses the above algorithm, using your stack and queue
implementations from problems #1 and #2. It should expect a C++ string as its parameter, and
return bool true if the passed string is a palindrome that does not exceed the stack/queue maximum
capacity, and return bool false otherwise. (Because we are talking about fixed-capacity stack and
queue implementations here, your function should also return false if the passed string is too long.
How can you check this?)

(As implied in the above algorithm description, your function will only consider letters a-z
(regardless of case) in its consideration; other characters should be ignored. That is:

CIS 291 - HW #3 p.3
Spring 2005

string phrase = "Madam, I'm Adam";
cout << (is palindrome (phrase) == true) << endl;

...would print a 1 (is_palindrome() would return true for this string phrase).)

(Hint: when you #include string and/or iostream, you also include such nifty functions as isalpha
which, when given a char as an argument, returns bool true if it is an alphabetic character and false
otherwise, and tolower which, when given an alphabetic character, returns the lowercase version of
that character. Also, note how strings are used in the reverseString.cpp example.)

(Hint #2: in writing is_palindrome.h, note that #include's are only needed in a .h file when the
function prototype has a parameter type that requires it...)

Yes, you are required to appropriately use both a stack and a queue in your solution. Be sure,
amongst your examples, to include at least one even-length palindrome and at least one odd-length
palindrome (traditionally this can be a sticking point in some algorithms).

You will turn in is_palindrome.cpp, is_palindrome.h, test_is_palindrome.cpp, and the results of
running test_is_palindrome redirected to a file named hw3_pal output.

Note that, when you are finished with this homework, you will be submitting 10 files:
stack.h, stack.template, test_stack.cpp, hw3_stack output,

queue.h, queue.template, test queue.cpp, hw3 _queue output,
is_palindrome.cpp, is_palindrome.h, test_is_palindrome.cpp, and hw3_pal_output.

