
"UML" for a second queue class (revised 2-3-05)

NOW: for a FIXED CAPACITY queue

adapted from Ch. 8, Savitch and Main, "Data Structures and Other Objects Using C++"

Template Class: queue
/* a collection of items such that entries can be inserted at one end (called the rear) and removed

at the other end (called the front). */

Member data and related details:
/* contains elements of the type set to be the value of template parameter Item */

/* has a fixed capacity */

Constructors:
/* postcondition: creates an empty queue instance */
queue();

Accessors and other constant member functions:
/* postcondition: returns true if queue is empty, and returns false otherwise */
bool is_empty() const;

/* postcondition: returns true if queue is full (if it contains the number of items equal to its
capacity), and returns false otherwise */

bool is_full() const;

/* precondition: is_empty() == false */
/* postcondition: returns the value of the front item of the queue, BUT the queue is unchanged. */
Item get_front() const;

/* postcondition: returns the capacity of the queue (how many items it CAN hold) */
int get_capacity() const;

/* postcondition: returns the number of elements currently in the queue */
int get_size() const;

Modifiers and other modifying member functions:
/* precondition: is_full() == false */
/* postcondition: a new copy of entry has been inserted at the rear of the queue */
void enqueue(const Item& entry);

/* precondition: is_empty() == false */
/* postcondition: the front item of the queue has been removed, and its value is returned */
Item dequeue();

