
"UML" for an htable class (last revised 2-10-05)

Class: htable
/* a simple hash table of non-negative integers */

Member data and related details:
/* contains non-negative integers */

/* has a fixed capacity */

Constructors:
/* postcondition: creates an empty htable instance with a fixed capacity */
htable();

Accessors and other constant member functions:
/* postcondition: returns true if htable is empty, and returns false otherwise */
bool is_empty() const;

/* postcondition: returns true if htable is full (if it contains the number of items equal to its
capacity), and returns false otherwise */

bool is_full() const;

/* precondition: target >= 0 */
/* postcondition: returns true if <target> is in htable; returns false otherwise. */
bool is_in_table(int target) const;

/* (if we were storing objects instead of simple integers, we d likely add a member that could return‛
a copy of a stored object given its key value...)*/

/* postcondition: returns the capacity of the htable (how many items it CAN hold) */
int get_capacity() const;

/* postcondition: returns the number of elements currently in the htable */
int get_size() const;

Modifiers and other modifying member functions:
/* preconditions:

* is_full() == false
* entry >= 0 */

/* postconditions:
* if <entry> is already in htable, returns false and htable remains unchanged
* if <entry> is not already in htable, adds it to htable and returns true

bool insert(int entry);

/* preconditions: entry >= 0 */
/* postconditions:

* if <entry> is not in htable, returns false and htable remains unchanged
* if <entry> is in htable, removes it from htable and returns true

bool remove(int entry);

Other member functions:
/* KLUGY --- normally would not include... BUT, for our purposes... */

/* postcondition: prints the htable s contents to the screen, separating each element with at least one blank‛
and printing NU for never-used slots and PU for previously-used slots. */

void print_guts();

