
CIS 291 – HW #7 p. 1
Spring 2005

CIS 291 – Data Structures in C++ - Spring 2005
Homework #7

HW #7 due: THURSDAY,March 24th, BEGINNING of lecture

Purpose:
To read about, think about, and practice with linked implementations of ADT's.

How this will be turned in:
Use ~st10/291submit, called from the directory on cs-server where the files you wish to submit are stored.

Homework #7
On the public course web page, you will find the node.cpp and node.h files mentioned in lecture.

Youwill recall that we also discussed using node in a linked implementation of the stackADT, which is
very similar to the 2-3-05 stack pseudo-UML (see Week 3 Lab Exercise and Lecture #2 links) except that it is no
longer fixed-capacity. That is, methods get_capacity and is_full have been removed, as have been all references
to a fixed capacity or references to these methods.

An implementation that should reflect what we discussed conceptually in lecture is also available on the public
course web page: stack.h, stack.cpp, and test_stack.cpp. (Make sure you have the versions with last-modified
date of 3-10-05!)

(Note that, because dynamic allocation is involved, this includes an explicitly defined copy constructor and
destructor. If you read these implementations carefully, you should be able to get an idea of what they do.

* sometimes the copy constructor is called implicitly, and sometimes explicitly --- I hope to discuss this
further later on. But, in the meantime, it is always written in the "pattern" shown here, with exactly one
argument as shown. Its usual purpose is to (in the words of Savitch and Main, p. 56) "to initialize a new
object as an exact copy of an existing object".

You can see an example of syntax that ends up calling the copy constructor within test_stack.cpp.

* you don't generally call the destructor directly --- but it is called automatically in a number of cases, such as
when you end the function in which an object was declared.

It, as the name implies, destroys the object --- frees all of its memory properly when the object in question is
no longer needed.

)

0. NOTE!!! The INTENTION here is that you CAREFULLY READ and STUDY the files provided --- do you
understand node's implementation? Do you understand stack's implementation?

1. (warm up) Keep in mind, we have a number of files involved for test_stack.cpp to link and load
successfully! Do you know what all of them are? To make sure:

* copy all of the files that you need to run test_stack.cpp into a new directory on cs-server named
291hw07.

* Add a cout statement to test_stack.cpp that prints out your name, to personalize your output.

* Then, compile it, run it, make sure that all it well, and then redirect its output into a file 291hw07_1:

test_stack > 291hw07_1



CIS 291 – HW #7 p. 2
Spring 2005

Submit your 291hw07_1 file using ~st10/291submit; this will show (hopefully) that you've remembered
everything needed to run a program using a linked stack.

(It also shows why we are almost at the point where make files would be worth the effort to make and set
up...)

2. Now, implement a linked implementation of our queueADT; make sure that your implementation MEETS
the specifications of the 2-3-05 queue pseudo-UML (posted with HW #3), except with all references to
fixed-capacity --- including methods get_capacity and is_full --- REMOVED.

It must also use the node class appropriately.

(ASK ME if you are not clear what is being required above!!!!!)

Create queue.h, queue.cpp, and test_queue.cpp that is a queue-appropriate testing main function patterned
(carefully!) after the test_stack.cpp posted along with this assignment. (You should NOT be "removing" any
tests, although you will of course modify them to be appropriate for queues; you may ADD additional tests
if you wish.)

When you have tested these, debugged them, and are satisfied with them, run test_queue and redirect its
output into a file 291hw07_2:

test_queue > 291hw07_2.

A few additional requirements/comments:
* careful reading and thought is the intent here; comments that still read like stack comments may result

in point deductions.

* what does a linked list that is going to serve as a queue need? Hint: there is more than one way to do
this, but some alternatives are a lot harder to work with than others...

* As you are writing your copy constructor, look carefully at the stack version, of course. But also
consider: how should you set rear for the new copy? This is probably the trickiest part of this method
(and there are easier and harder approaches for attempting it...)

* POINTER/LINKED LIST RULES TO LIVE BY:
* If there is ANY chance --- ANY chance at all! --- that a pointer might be NULL, then you need to

MAKE SURE that it is NOT null before you try to follow it.

(failure to do so can lead to lovely run-time errors --- segmentation faults, bus errors, fun stuff.)

* For any operation on a linked list, double check your implementation:
* does it work in the empty list case (if that is applicable)?
* does it work in a single-element case?
* does it work in a multi-element case?

* When it doubt, hand-walk through your code, drawing the lovely box-and-arrow pictures...

When you are done, submit the following files using ~st10/291submit:

291hw07_1
queue.h, queue.cpp, test_queue.cpp, 291hw07_2


