
CIS 291 – HW #8 p. 1
Spring 2005

CIS 291 – Data Structures in C++ - Spring 2005
Homework #8

HW #8 due: FRIDAY, APRIL 1st, 5:00 pm

(that's not an April Fool ---
it is due 1 day later due to the Cesar Chavez holiday on Thursday, March 31st)

Purpose: more linked structure practice, using linked-list mergesort, and using a list ADT with a non-builtin
class.

How this will be turned in:
Use ~st10/291submit, called from the directory on cs-server where the files you wish to submit are stored.

Homework #8

1. We discussed a general listADT informally in lecture. Consider the simpler babylistADT provided along
with this homework handout, and implement it as a class. (For this homework, it is not required to be a
template class, but it may be if you wish it to be.)

Additional requirements:
* you must implement your babylistADT as a singly-linked list, using the node class posted along with

HW #7.

* in implementing the sort operation within the babylistADT pseudo-UML, you must use call the
mergesort function discussed in class, and also available from the course web page. (Careful --- which
files do you need to copy over? Which files need to be #include'd in babylist.cpp/babylist.template?
Which files need to used in the g++ command creating an executable for a main function using the
babylist class? (hint: it's a bunch... more support for makefiles!))

After you have written babylist.h and babylist.cpp (or babylist.template, if you chose to implement a
template class), write a testing main function test_babylist.cpp to list your class, and redirect its output into
291hw08_1_out. (Although your program also uses the node and mergesort files, these should not need to
be modified, and so they do not need to be submitted.)

Youwill submit your versions of babylist.h, babylist.cpp, test_babylist.cpp, and 291hw08_1_out.

2. Now, consider the wordcount class from HW #6. You could have a babylist of wordcount instances; you
could sort a linked list of wordcount instances --- or, you could with a few more features added to the
wordcount class.

First of all, mergesort expects to be able to compare the data fields; it happens to use <= . So, wordcount
needs to include this operator. The decision has been made the wordcount's <= makes the decision based on
the involved instance's count field values.

Since I cannot remember if CIS 230 includes coverage of implementing your own operators, this will be
included this time (either as reminder or as an example, whichever the case may be):

Within the wordcount.h class declaration, you should add an OPERATORS section comment and the
code:

// postcondition: returns true if this object's count field is less than
// or equal to <operand>'s count field
//
bool operator <= (wordcount operand);

CIS 291 – HW #8 p. 2
Spring 2005

Within the wordcount.cpp implementations, you should add an OPERATORS section comment and the
code:

// postcondition: returns true if this object's count field is less than
// or equal to <operand>'s count field
//
bool wordcount::operator <= (wordcount operand)
{

return (get_count() <= operand.get_count());
}

The above will permit linked lists of nodes whose data field contains wordcount instances to be sorted in
order of ascending count field values.

We need another more thing --- there are times when C++ automatically calls a default constructor for a
class. I'd avoided specifying one for wordcount, because the intent is that the string field cannot be changed
once it is initialized. But, it seems to need to be there, even though you cannot really do much with such an
instance. So, a default operator needs to be added under the CONSTRUCTORS section in wordcount.h:

// postcondition: creates a wordcount instance with word that
// is an empty string and a count of 0
// (here as a concession to when C++ requires the presence of a
// default constructor --- note that word fields are not intended
// to be changeable once initialized)
//
wordcount();

And, in the CONSTRUCTORS section of wordcount.cpp (but using your field names...!):

// postcondition: creates a wordcount instance with word that
// is an empty string and a count of 0
// (here as a concession to when C++ requires the presence of a
// default constructor --- note that word fields are not intended
// to be changeable once initialized)
//
wordcount::wordcount()
{

word_field = "";
count_field = 0;

}

Finally --- sadly --- I wrote #3 assuming you'd be able to print the value_type used in babylist. That means
wordcount needs to be able to be printed using cout!!

To get this capability, you must add a nonmember function implementing operator << for wordcount. In
wordcount.h ,AFTER the class definition but BEFORE the #endif, put a section comment for
NONMEMBER FUNCTIONS and then:

// postcondition: outputs the data fields of a wordcount instance
// <source> relatively gracefully to ostream <outs>.
//
ostream& operator <<(ostream& outs, const wordcount& source);

And, wordcount.cpp, first #include <iostream>, and then add a section comment at the end for
NONMEMBER FUNCTIONS and then:

CIS 291 – HW #8 p. 3
Spring 2005

// postcondition: outputs the data fields of a wordcount instance
// <source> relatively gracefully to ostream <outs>.
//
ostream& operator <<(ostream& outs, const wordcount& source)
{

outs << "word: " << source.get_word()
<< " count: " << source.get_count();

return outs;
}

Modify your test_wordcount.cpp function to appropriately test the new constructor, new operator, and <<,
and redirect the results of your testing into 291hw08_2_out.

Submit your modified wordcount.h, wordcount.cpp, test_wordcount.cpp, and 291hw08_2_out.

3. Now, let's use both of the pieces from HW #1 and HW #2 in a simple application, orderThem.

I know that you covered file i/o in CIS 230. You are going to make use of this here.

Assume that a file contains input structured exactly as follows (it isn't your application's job to verify this,
or complain if it isn't so --- it may simply blithely assume that it is): on the first line is an integer,
representing how many words are in the file, on the next line is the first word, on the line after that is an
integer representing its frequency, on the line after that is the next word, on the line after that is an integer
representing the 2nd word's frequency, and so on, for as many words are were indicated on the 1st line.

What shall your application do? It will:

* ask the user for the name of an input file,
* try to open it, and if it can,

then read the file,
creating a wordcount instance for each word and count encountered
and adding it to a babylist of wordcount instances.

* Then, sort the resulting babylist,
* and print out the babylist contents to the screen.

Now, it will be tricky to redirect orderThem's output, because it has interactive input. The trick is that the
prompt for entering the file name will be redirected to the output file, and you have to remember to simply
type the input file name without actually being prompted for it (your program will patiently wait until you
do...!) BUT, you can get the required output from an example run into a file 291hw08_3_out in this way.

(This application is not a testing main --- so we won't be able to include what should be seen, and what is
seen. Oh well...)

Youwill submit orderThem.cpp, your test input file, and 291hw08_3_out.

When you are done, submit the following files using ~st10/291submit:

babylist.h, babylist.cpp, test_babylist.cpp, 291hw08_1_out.
wordcount.h, wordcount.cpp, test_wordcount.cpp, 291hw08_2_out.
orderThem.cpp, your test input file, and 291hw08_3_out.

