
CIS 291 – HW #9 p. 1
Spring 2005

CIS 291 – Data Structures in C++ - Spring 2005
Homework #9

HW #9 due: THURSDAY, April 7th, BEGINNING of lecture

Purpose: practice with binary trees and binary search trees, practice with inorder tree traversal.

How this will be turned in:
Use ~st10/291submit, called from the directory on cs-server where the files you wish to submit are stored.

Homework #9

1. On the course web page, you will find the pseudo-UML for a binary_tree class.

Because this ADT is trying to hide the underlying implementation, it uses the concept of a "current node"
to hide what is actually going on underneath.

You can grab the value of the "current node" with the retrieve method; you can shift the current node to be
the root (shift_to_root), to be down to the left from the current node (shift_left), and down to the right from
the current node (shift_right), and so on.

Nodes are added to the binary_tree instance relative to the "current node"; you can add_left to add a left
child to the "current node", IF has_left_child is false, for example. You can even add subtrees.

You need to carefully read and consider this pseudo-UML; then, see if you can read the big'n'sprawling
test_binary_tree.cpp example file posted. It is trying to test many of the methods in binary_tree.

And, there are files binary_tree.h and binary_tree.template posted that attempt to implement this UML.
Note that it adds a copy constructor, destructor, and assignment operator, as is expected for a linked
implementation.

Oh, and if it is linked, you'd expect to need a node class --- and, indeed, you will find binary_tree_node.h
and binary_tree_node.template available, too. As described in class, these nodes have left and right
pointers (but not parent pointers, in this particular implementation).

Copy the files binary_tree_node.h, binary_tree_node.template, binary_tree.h, binary_tree.template,
and test_binary_tree.cpp to cs-server. Adapt test_binary_tree.cpp to FIRST print a line containing YOUR
NAME, and then compile and run test_binary_tree.cpp, redirecting its output into 291hw09_1_out for
submission. That will show that you successfully transferred the files and tested them out.

Submit your resulting 291hw09_1_out. (You'll be making further modifications to test_binary_tree.cpp,
so do not submit it yet!)

2. For #3, we are going to want to implement an in-order traversal of a binary tree. It turns out that this is most
easily accomplished if helper functions/methods are added to binary_tree_node and binary_tree.

You see, the recursive version that works so well is implemented most simply at the level where you know
implementation details. SO --- in binary_tree_node.h and binary_tree_node.template, add the following
NON-MEMBER function node_print_inorder, that takes a pointer to a binary_tree_node and prints the
results of an in-order traversal, where a node visit results in that node's value being printing on its own line
to the screen:

...in binary_tree_node.h:

// preconditions: node_ptr is a pointer to a node in a



CIS 291 – HW #9 p. 2
Spring 2005

// binary tree (representing the root of a (sub)tree), or
// it may be NULL to indicate an empty (sub)tree
// postconditions: prints to the screen the nodes in that
// (sub)tree in in-order traversal order
//
template <typename Item>
void node_print_inorder(const binary_tree_node<Item>* node_ptr);

...in binary_tree_node.template:

// node_print_inorder
//
// preconditions: node_ptr is a pointer to a node in a
// binary tree (representing the root of a (sub)tree), or
// it may be NULL to indicate an empty (sub)tree
// postconditions: prints to the screen the nodes in that
// (sub)tree in in-order traversal order
//
template <typename Item>
void node_print_inorder(const binary_tree_node<Item>* node_ptr)
{

you fill in the implementation!
}

Now, with that done, binary_tree.h and binary_tree.template should have added the now-very-simple
tree_print_inorder METHOD (this one IS part of the binary tree CLASS!) added, which calls
node_print_inorder appropriately:

... in binary_tree.h:

// postconditions: contents of the tree's entries are
// written to the screen, one entry per line, in
// inorder order.
//
void tree_print_inorder();

...in binary_tree.template:

// tree_print_inorder
//
// postconditions: contents of the tree's entries are
// written to the screen, one entry per line, in
// inorder order.
//
template <typename Item>
void binary_tree<Item>::tree_print_inorder()
{

you fill in the implementation!
}

Finally, add an appropriate testing call of tree_print_inorder to the test_binary_tree.cpp that you
modified in problem #1; be sure to include a printout of what it SHOULD print out, before you call the
function (and let it print what IT prints out...). Redirect the output of your modified test_binary_tree.cpp
into a file 291hw09_2_out for submission.

Although you have modified binary_tree.h and binary_tree_node.h also, you are only required to submit
your resulting binary_tree.template, binary_tree_node.template, test_binary_tree.cpp, and



CIS 291 – HW #9 p. 3
Spring 2005

291hw09_2_out files.

3. Now that you have your results from problems #1 and #2, you will use them to help to create a very basic
version of a binary search tree template class, named bst. Note that it does not permit duplicate values.

You'll find the pseudo-UML for bst that you are required to implement linked along with this assignment,
and you'll find a cursory test_bst.cpp that you are expected to use to test your resulting implementation.

We've mentioned how you can use one ADT in implementing another --- here, you will be trying this
concept out. Your bst class must use a private instance of a binary_tree within it. (After all, a bst is really
just a binary_tree that meets certain additional criteria --- in bst, we'll ensure that it does by severely limiting
what a user can do with a bst, and ensuring that, whenever an element is added, that it is added in such a
way that the bst still meets the binary search tree properties after the addition.)

NOTE the following additional requirements and suggestions
* your bst class must not directly use the binary_tree_node class. It must contain a private data field that

is a binary_tree instance.

* you are required to include and maintain an explicit counter/size data field in class bst, to keep track of
the number of elements currently within the bst.

* you must explicitly implement a destructor, copy constructor, and assignment operator in your bst
template class.

* remember that your bst class has NO IDEA how binary_tree is implemented --- it only knows the
public methods of binary_tree. If you try to call binary_tree_node-related stuff in bst, it will not work.
However, within bst's implementation, your binary_tree data field can certainly call any of the
binary_tree methods mentioned in the binary_tree pseudo-UML (and also assignment).

* a hint for the add method: how can you add an element to a bst, and make sure that the tree is still a bst
afterwards? After you have made sure that the element isn't there --- note add's precondition! --- then
try to search for the element being added; the point where you can say that it is not there is where it can
be safely inserted, you see. Try this "by hand" a few times until you see what I mean.

* Add a print out of your name to the beginning of test_bst.cpp, and be sure to run it with your
resulting implementation. FEEL FREE to add additional tests to this, if you wish (following course
testing standards, of course). Redirect its results into 291hw09_3_out for submission.

You should submit your resulting bst.h, bst.template, test_bst.cpp, and 291hw09_3_out.

When you are done, submit the following files using ~st10/291submit:

test_binary_tree.cpp, 291hw09_1_out
binary_tree.template, binary_tree_node.template, test_binary_tree.cpp, 291hw09_2_out
bst.h, bst.template, test_bst.cpp, 291hw09_3_out


