
CIS 291 – HW #11 p. 1
Spring 2005

CIS 291 – Data Structures in C++ - Spring 2005
Homework #11

HW #11 due: THURSDAY,April 21st, BEGINNING of lecture

Purpose: implementing a given setADT, making design decisions for that implementation

How this will be turned in:
Use ~st10/291submit, called from the directory on cs-server where the files you wish to submit are stored.

Homework #11

On the next page, you will see a familiar pseudo-UML diagram --- it is the same set UML that you saw for Exam
#2.

Design/write/test/debug this class set --- create appropriate files set.h and set.template. Youmust implement the
given pseudo-UML diagram precisely, you must implement set as a template class, and you must follow course
style standards, but you get to choose how you will implement it. Youmay use other classes within your
implementation (but submit any additional needed files along with your set.h and set.template! I should have
what I need to run your set implementation if I choose to.)

[Note: you should not be adding operations to those given in the pseudo-UML, EXCEPT for those operations
required (but not usually specified in our course UML's) when you have an implementation involving
dynamically-allocated memory. If you are not sure what I mean, compare some of the posted implementations to
their corresponding UML's, and see how they differ.]

Write a test_set.cpp that tests your class (following course style standards), and when you are happy with your
code run:

test_set > 291hw11_out

...and submit your resulting set.h, set.template, test_set.cpp, 291hw11_out, and any files needed for other
classes' you've used in your implementation of set.

set pseudo-UML begins on the NEXT PAGE!



CIS 291 – HW #11 p. 2
Spring 2005

"pseudo-UML" diagram for Exam set template class

Template Class: set
/* an unordered collection of items of a single type, duplicates NOT permitted */

Member data and related details:
* contains elements of type value_type; this is set to be the value of template parameter Item
* has a size of size_type

Constructors:
/* postcondition: creates an empty set instance */
set();

Accessors and other constant member functions:
/* postcondition: returns the number of items in the set. */
size_type get_size() const;

/* postcondition: returns true if the target is in the set, and returns false if it is not. */
bool contains(const Item& target) const;

/* postcondition: returns true if there is a valid "current" item that may be returned by the current member function.
Returns false if there is no valid current item. */

bool is_item() const;

/* precondition: is_item() == true
postcondition: returns the current item in the set's internal iterator. */

Item current() const;

Modifiers and other modifying member functions:
/* postcondition: if target was in the set, remove it and return true; otherwise, return false (and the set is

unchanged) */
bool remove(const Item& target);

/* postconditions: if entry is not already in the set, then add it to the set; otherwise, set is unchanged. */
void add(const Item& entry);

/* postcondition: one of the items in the set becomes the current item (but if the set is empty, there is no current
item) */

void start();

/* precondition: is_item() == true
postcondition: if the current item is the last in the set's internal iterator, then there is no longer any current item.
Otherwise, the new current item is another set element that has not yet been current during this internal iterator.
*/

void advance();

Other methods
/* postcondition: this returns a new set whose membership is the set-theoretic (classic) union of the calling set and

<set2> */
set<Item> union(set<Item> set2);

/* postcondition: this returns a new set whose membership is the set-theoretic (classic) intersection of the calling set
and <set2> */

set<Item> intersect(set<Item> set2);


