
CIS 291 – HW #12 p. 1
Spring 2005

CIS 291 – Data Structures in C++ - Spring 2005
Homework #12

HW #12 due: THURSDAY, May 5th, BEGINNING of lecture

Purpose: Thinking/experience with graphs

How this will be turned in:
Use ~st10/291submit, called from the directory on cs-server where the files you wish to submit are
stored.

HOMEWORK #11:

1. Copy all of the files accompanying this assignment handout on the public course web page into
your desired current working directory on cs-server.

You now have a (possibly-buggy, hopefully-not) implementation of a template class graph,
implemented using adjacency lists (which can be done in a way rather reminiscent of a buckets-and-
chaining hash table! But I digress...) You also have some other handy ADT's from previous
assignments.

Show that you have everything you need for the graph implementation, at least, by:
(a) Adding a a cout statement containing your name to try_graph.cpp,

(b) compiling it, running it, and running it redirecting its output into try_graph_out1:

try_graph > try_graph_out1

...and submitting try_graph_out1.

2. I want to make sure you are at least a little familiar with the capabilities of this provided graph.h
and graph.template. So, write a small program graph_ex.cpp that simply uses graph.h and
graph.template to create the following graph, and to print it using graph's print_graph member
function:

T A G

F H

Q
B

[Of course, you should precede that print_graph call with a printout saying what you expect to see
--- but, you may use the style used in try_graph.cpp for this. That is, it is sufficient to list the
expected vertices and edges; they needn't be formatted/look exactly the same as print_graph depicts

CIS 291 – HW #12 p. 2
Spring 2005

them, nor must each edge be listed twice as print_graph does. The point is that the reader can tell if
the expected graph and actual graph are the same in essence.]

Run:

graph_ex > graph_ex_out

...and submit your resulting graph_ex.cpp and graph_ex_out .

3. If I wanted you to *implement* bfs and dfs --- I couldn't, yet, with the provided graph. It has no
way to mark nodes as visited.

SO --- we're going to modify it so that it does.

Modify graph.h and graph.template such that you:

* add a separate array of type bool and sizeMAXIMUM called vertex_markings that is initially
all false --- it represents the current markings for all vertices in the graph.

* (note that get_vert_index(label) returns the index into array vertices for vertex label --- this
value should also be label's index into vertex_markings.)

* add a member function unmark_all which re-marks all vertices as false;

* add a member function mark which takes an Item vert and sets the mark for the vertex vert to
true.

* add a member function get_mark which takes an Item vert and returns the current marking for
vert.

Add appropriate tests of mark, unmark_all, and get_mark to try_graph.cpp. Run:

try_graph > try_graph_out2

...and submit versions of your modified graph.h, graph.template, try_graph.cpp, and
try_graph_out2

4. Consider the following pseudocode for depth-first search:

// PSEUDOCODE - RECURSIVE VERSION
// dfs
// Purpose: traverses a graph g beginning at vertex v by using a depth-first
// search:
// Recursive version
template <typename Item>
void dfs (graph<Item> g, Item v)
{

// mark v as visited
g.mark(v);
cout << "visited: " << v << endl;

for (each unvisited vertex u adjacent to v)

CIS 291 – HW #12 p. 3
Spring 2005

{
dfs(g, u);

}
}

Implement this pseudocode for dfs as a stand-alone template function.

[HINT: you'll find an implementation of set with the provided code --- that's because one of graph's
methods returns a set of vertices. Which one? And how might that method be USEFUL in
implementing dfs --- especially if you make use of set's internal iterator methods as well?]

In babytest_dfs.cpp, run your dfs function on the graph from homework problem #2 two times
once starting at node G and once starting at node F, putting the output into babytest_dfs_out and
submitting your dfs.template, babytest_dfs.cpp and babytest_dfs_out.

[yes, babytest_dfs_out should still print out actual and expected results --- here, though, just
summarizing the order that you expect the nodes to be visited before each dfs call will suffice. The
"expected" doesn't have to put 1 node per line with "visited:" as dfs will actually do. ASK ME if
you are not sure what I mean by this.]

5. Now consider this pseudocode for breadth-first-search:

// PSEUDOCODE
// bfs
// Purpose: traverses a graph beginning at vertex v by using a breadth-first
// search

template <typename Item>
void bfs(graph<Item> g, Item v)
{

queue<Item> myQ;
Item w, u;

// add v to queue and mark it
myQ.enqueue(v);
g.mark(v);
cout << "visited: " << v << endl;

while (!myQ.empty())
{

w = myQ.dequeue();

// loop invariant: there is a path from vertex w to every vertex in
// the queue myQ
for (each unvisited vertex u adjacent to w)
{

// mark u as visited
g.mark(u);
cout << "visited: " << u << endl;
myQ.enqueue(u);

}
}

}

Implement this pseudocode for bfs as a stand-alone template function.

CIS 291 – HW #12 p. 4
Spring 2005

[HINT: the same comment regarding set applies here as well as it does in problem #4...]

In babytest_bfs.cpp, run your bfs function on the graph from homework problem #2 two times
once starting at node G and once starting at node F, putting the output into babytest_bfs_out and
submitting your bfs.template, babytest_bfs.cpp and babytest_bfs_out.

[yes, babytest_bfs_out should still print out actual and expected results --- here, though, just
summarizing the order that you expect the nodes to be visited before each bfs call will suffice. The
"expected" doesn't have to put 1 node per line with "visited:" as bfs will actually do. ASK ME if
you are not sure what I mean by this.]

And, when you are satisfied with all of the above, submit them using ~st10/291submit on cs-server:

try_graph_out1
graph_ex.cpp, graph_ex_out
graph.h, graph.template, try_graph.cpp, and try_graph_out2
dfs.template, babytest_dfs.cpp, babytest_dfs_out
bfs.template, babytest_bfs.cpp, babytest_bfs_out

