CIS 291 — Week 9 Lab Exercise p.-1
Spring 2005

CIS 291 — Data Structures in C++ - Spring 2005
Week 9 Lab Exercise
Week 9 Lab Exercise due: by END of LAB on Tuesday, March 22nd

Purpose:
Thinking about destructors, copy constructors and assignment operators; more linked-list practice.

Answer the following on a piece of paper individually. Then, compare and discuss your answers with at
least one other class member. Then, write your name on the “Next:“ list to get your work checked over.
As always, to receive credit for this lab exercise, your work must be completed by the end of the lab
period.

NOTE that this time, you will lose points for incorrect answers --- I want you to be especially
careful in your checking with one another, and to really discuss any differences until you have
resolved them.

1. You are supposed to be reading and carefully considering the example stack.h and stack.cpp
containing a linked implementation of a stack for HW #7.

One nice thing about copy constructors and destructors is that their declarations follow a very
particular pattern (even if their definitions do not!).

Based on what you have read in stack.h, you should be able to deduce appropriate answers to the
following questions:

Assume that you've written a new class lab09thing, with appropriate files lab09thing.h and
lab09thing.cpp. Assume, also, that lab09thing has data fields that are dynamically allocated, so
that explicitly-defined copy constructor and destructor are needed.

(a) Write the declaration for class lab09thing's copy constructor as it would appear within
lab09thing.h.

(b) Write the declaration for class lab09thing's destructor as it would appear within lab09thing.h.

2. Linked list practice:
Consider our node.h (the one posted along with HW #7 will be fine).

Sometimes one adds additional, "helper" functions along with a node class --- they are not part of
the node class itself, but they make dealing with linked structures more convenient.

The declarations for these helper functions are placed in node.h, after the node class declaration but
before the #endif. The definitions for these helper functions are placed in node.cpp (or
node.template), after the class method definitions.

Consider what should happen when you are finished with a linked list --- you want to deallocate all
of the nodes, right? (Return them to the heap!) But, how are you to do that? If you call delete for

CIS 291 — Week 9 Lab Exercise p.-2
Spring 2005

the first node, only, then that's all that you will deallocate; the rest will be left in the heap,
unreachable and wasting space. There's no single delete statement that you can call that will delete
the entire list.

However, one could write a node helper function that, given a pointer to a node, will "walk
through" the nodes reachable from that point, carefully calling delete for each.

Write the definition for a function list_clear, that takes a pointer to a node as its argument, and
deallocates all of the nodes reachable from that pointer.

(Note: for this lab exercise:
* you ONLY have to write this function "on paper"; you do not actually have to modify node.h
or node.cpp. At least, not yet.

* no opening comment block is required for this on-paper exercise.)

BE CAREFUL --- can the address stored within the parameter pointer be changed? Should it be?
So, how should this parameter be passed?

3. Now, when you have dynamically allocated data fields, in addition to an explicitly-definied copy
constructor and destructor, it is also expected that one include an explicitly-defined assignment
operator.

The good news is that the assignment operator's implementation is quite similar to the copy
constructor's implementation (both are making a deep copy of dynamic data, after all).

CIS 291 — Week 9 Lab Exercise p.-3
Spring 2005

So, the differences between the assignment operator's implementation and the copy constructor's
implementation are quite small, and can be summarized as follows (adapted from Savitch and Main,
"Data Structures and Other Objects Using C++", 3rd Edition, p. 179):

* The copy constructor builds a copy of an object from scratch --- the assignment operator is not
constructing a new copy, but is "filling"/"resetting" an existing one appropriately.

So, the copy constructor must allocate memory appropriately for the new copy. The assignment
operator already has an allocated "destination", if you will.

However, it is very possible, depending on the particular implementation details, that memory
might still have to be newly-allocated to accomplish the assignment. For example, perhaps a
dynamic array field has to be resized; and with a linked structure, there could be quite a bit of
new allocation taking place. If data fields are re-allocated, then the original fields' contents
need to be returned to the heap (need to have delete appropriately called on their behalf). (And
you need to be very careful about this point when linked data structures are involved...!)

* In the assignment operator, you are expected to handle properly the case where (however
goofily) one tries to assign an object to itself. (Youknow, b =b;)

What is proper handling for this case? To simply leave the object unchanged --- to simply
return at that point.

This means every assignment operator definition should include the following code at its start
(assuming that its parameter is named source; for a different parameter name, change the
following accordingly!):

// Check for possible self-assignment
if (this == &source)
{

return;

}
So --- now what?
Consider stack.h and stack.cpp --- currently, no assignment operator is included.

Assume that the following is added to stack.h, within the class declaration:
void operator =(const stacké& source);

And, here is a printout of the definition of stack's current copy constructor, except with numbered
lines:

// copy constructor

//

// (adapted from list copy, Savitch and Main,
// p. 241)

stack::stack (const stack& source)

{

node *source curr, *new_curr;

S W N P

CIS 291 — Week 9 Lab Exercise p.-4

Spring 2005

O 1 o U1

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

Given what has been discussed above, you should be able to write the definition for operator =. Do

top = NULL;

used = source.used;

// handle the case of the empty stack
if (source.top == NULL)
{
return; // source is empty, so this copy is, too

}

// 1f source is NOT empty, make a copy of it

// cause new copy to now have source top's data;
top = new node (source.top->get data());

// start a pointer walking through the new copy
// starting from its top
new_curr = top;

// is there another in the source left to be copied?
source curr = source.top->get next();

// while there is another node in the source left

// to be copied...

while (source curr != NULL)

{
// add a new node to the new copy with the data in
// that node;

new curr->set next (new node (source curr->get data()));

// move the new copy's pointer to the new node
new curr = new_curr->get next();

// 1s there another in the source left to be copied?
source curr = source curr—->get next();

so, on the back of this page (or on the back of any page of this lab exercise handout).

For this lab exercise:

* no opening comment block is necessary; all you have to write is the definition for operator =.

* you may assume that node.h and node.cpp now include your function from problem #2 above

(hint! hint!)

* for code that would be the same as the copy constructor, you may simply write the range of

line numbers in your on-paper implementation. For example,

// lines 99-258 from copy constructor

