
CIS 291 – Week 15 Lab Exercise p. 1
Spring 2005

CIS 291 – Data Structures in C++ - Spring 2005
Week 15 Lab Exercise

Week 15 Lab Exercise due: by END of LAB on Tuesday, May 3rd

Purpose:
To become more familiar with depth-first-search and breadth-first-search of a graph

Week 14 Lab Exercise
Answer the following questions on paper; after coming up with your initial answers, you may discuss
them with another student before getting your answers checked, if you wish. When you are ready, put
your name on the "Next:" list on the board so that your answers can be checked.

[Note: check carefully! There will be points docked for errors, this time, to encourage you to double-
check carefully *before* getting your work checked.]

Consider the following pseudocode for depth-first search:

// PSEUDOCODE - RECURSIVE VERSION
// dfs
// Purpose: traverses a graph g beginning at vertex v by using a depth-first
// search:
// Recursive version
template <typename Item>
void dfs (graph<Item> g, Item v)
{

// mark v as visited
g.mark(v);
cout << "visited: " << v << endl;

for (each unvisited vertex u adjacent to v)
{

dfs(g, u);
}

}

Assume further that you have the following graph g1:

T A G

F H

Q
B

CIS 291 – Week 15 Lab Exercise p. 2
Spring 2005

1. Write this graph in G = {V, E} form.

__

__

__

2. Assume that, for professorial sanity, when you have a choice of adjacent unvisited nodes, you
choose the unvisited node in that is earliest in the alphabet.

Then, write what could be printed to the screen as a result of:

(a) dfs(g1, 'G'); (b) dfs(g1, 'F');

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

3. In graph g1, which nodes are adjacent to node T?

__

Give an example of a simple path in graph g1.

__

Give an example of a simple cycle in graph g1.

__

Is graph g1 connected? _____________ Is graph g1 complete? ____________

(go to NEXT PAGE for #4!!!)

CIS 291 – Week 15 Lab Exercise p. 3
Spring 2005

Now consider this pseudocode for breadth-first-search:

// PSEUDOCODE
// bfs
// Purpose: traverses a graph beginning at vertex v by using a breadth-first
// search

template <typename Item>
void bfs(graph<Item> g, Item v)
{

queue<Item> myQ;
Item w, u;

// add v to queue and mark it
myQ.enqueue(v);
g.mark(v);
cout << "visited: " << v << endl;

while (!myQ.empty())
{

w = myQ.dequeue();

// loop invariant: there is a path from vertex w to every vertex in
// the queue myQ
for (each unvisited vertex u adjacent to w)
{

// mark u as visited
g.mark(u);
cout << "visited: " << u << endl;
myQ.enqueue(u);

}
}

}

4. Again, assume that, for professorial sanity, when you have a choice of adjacent unvisited nodes,
you choose the unvisited node in that is earliest in the alphabet.

And now show what would be printed for the calls:

(a) bfs(g1, 'G'); (b) bfs(g1, 'F');

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

______________________________________ _______________________________________

