
CS 132 - Exam #1 Study Suggestions p. 1
Spring 2005

CS 132 Exam #1 - Study Suggestions

* last modified: 2-16-05

* The test covers through HW #3, the Week 5 Lab Exercise Exercise, and material
through the 2-14-05 lecture/2-16-05 lab.

* Anything that has been covered in assigned reading is fair game;
* Anything that has been covered in lecture is fair game;
* Anything covered in a course handout is fair game;
* Anything that has been covered in a lab exercise or homework assignment is
ESPECIALLY fair game.

* But, these are some especially-significant topics to help you in your studying for the
exam.

* You are responsible for being familiar with, and following, the class style guidelines.

* The exam will be closed-book and closed-notes, and you are expected to work
individually.

* Test format: will likely be short answer, possibly with a smattering of multiple-choice
questions.
* All you need to provide is a pen or a pencil;

* EXPECT to have to read and write C++ code, pseudocode, UML notation.

* note that you could definitely be given code and asked questions about it, as in the
Week 4 Lab Exercise (answering questions about the different sort implementations).

* the only aspect of namespaces that you are responsible for on this exam is that you
need to use using namespace std; after #include'ing standard libraries in modern,
standard C++.

* data structures
* what is a data structure? an organized collection of data...

* what is an abstract data type (adt)? a collection of data PLUS all of the
operations for acting on that data;

* phases of software development and program design recipe handouts
* be comfortable with the basic phases of software development as given in the

course text; be comfortable with the basic function design recipe discussed.

* especially: for a function,
1. figuring out what data is involved (data analysis),



CS 132 - Exam #1 Study Suggestions p. 2
Spring 2005

2. then writing a CONTRACT,

3. then writing the HEADER corresponding to that contract (here,
remember, we mean the first line of the *implementation*/definition,
NOT the prototype/declaration/what goes in the .h file)

4. then writing the PURPOSE, INCLUDING the parameter names
appropriately,

writing PRECONDITIONS and POSTCONDITIONS if called for,

5. then writing the EXAMPLES, actual example calles of the function,
including what the function returns or does as a result of that call,

6. and only THEN devising its algorithm, and then translating that
algorithm into code.

* what is the class "syntax"/notation for a function contract? Given a non-main
function or its description, you should be able to write a contract using this
syntax/notation.

* in this class, what should be incorporated into the Purpose: statement of a
function that has parameters?

* what is a precondition? what is a postcondition? what are the expectations for
these?

* you should be able to read and write assert statements to verify a function's
preconditions (for preconditions for which such tests are reasonable); you should
know what happens when an assert's condition is false.

* what goes in the Examples: section of a "regular" function's opening comment
block, in this class? How do we write these when the function returns, say, an
int?

* when should you come up with specific examples for a function or method?
(BEFORE you write it!)

* Given a function and/or its description, you should be able to write examples
that adequately test it (cover all major categories of input and boundaries
between those categories).

* be comfortable reading and appropriately writing code using EXIT_SUCCESS
and EXIT_FAILURE. (remember the class conding standards regarding these.)



CS 132 - Exam #1 Study Suggestions p. 3
Spring 2005

* should be able to read, write tester programs (testing main functions) as you
have been doing in class assignments.

* Lab and C++-related details
* how can you compile a C++ function on cs-server? how can you compile and

link a C++ program on cs-server?

* what should go in a .h file for a non-main function being written in its own file?
How does another function use a non-main function written in its own file?

* how can you redirect screen output to a file in UNIX?

* how should you declare a named constant in this class? (be familiar with both the
syntax, its meaning, and the class style standards for named constants)
* Within a class, how many "copies" of a thing declared to be static are there?

* running time analysis
* what is big-O notation? What does it mean? How can it be useful?

* given a formula representing the number of steps that some algorithm requires
for a problem of size n, you should be able to give the big-O notation for such an
algorithm (for example, as in Week 2 Lab Exercise problem #1)

* what is average-case run-time complexity? worst-case? best-case? What are the
differences between these?

* you should know (or be able to figure out) the run-time complexities for
"simple" operations, and express them using big-O notation;

* you should know (or be able to figure out) the average-, worst-, and best-case
time complexities for:
* sequential search and binary search
* selection sort, insertion sort, bubblesort, merge sort, quicksort, and radix

sort

* what phrase is equivalent to O(1)? to O(n)? to O(log n)? to O(n2)? to O(2n)?
* except for O(2n), you should be able to give an example of an algorithm that

takes that average-case running-time; you should be able to give an example
of an algorithm that average-case running time for O(n log n), also.

* (remember: in computer science, when log n is written, base 2 is assumed.)

* recursion
* what is a recursive definition? what is a recursive function?



CS 132 - Exam #1 Study Suggestions p. 4
Spring 2005

* requirements for "good" recursion!

* given a function --- does it demonstrate "good" recursion or not? Why? Why
not?

* what is a "base" case? Does every recursive function need one? Can a recursive
function have more than one?

* what is a recursive case? Does every recursive function need one? Can a
recursive function have more than one?

* given a recursive function, you should be able to tell what it would produce for a
call of that function; given a specific call to that function, you can give the
results of that call.

* you may be asked to write a recursive function.

* searching
* you are responsible for knowing sequential search and binary search.

* you should be able to describe the basic algorithm for each; you should know
their run-time complexities.

* if code was given,you should be able to recognize which of the above is being
implemented within that code.

* (frankly, you should be able to code some version of sequential search at the
drop of a hat...)

* you should be able to reason about variations on these basic algorithms

* sorting
* you are responsible for knowing selection sort, insertion sort, bubblesort, merge

sort, quicksort, and radix sort

* you should be able to describe the basic algorithm for each; you should know
their run-time complexities.

* if code was given, you should be able to recognize which of the above is being
implemented within that code.

* you should be able to reason about variations on these basic algorithms (using
bubblesort within quicksort when the list size is sufficiently small, for example)



CS 132 - Exam #1 Study Suggestions p. 5
Spring 2005

* introduction to container classes and bags
* what do we mean by a container class?

* for this exam, you are responsible for the idea of bags, for the bag class as
discussed in lecture, and for how such bags can be used; you should be
comfortable with their static-array and dynamic-array implementations, also.

* you should be able to read and use a data structure with a given "UML" such as
that given for bag in-lecture (and available from the course web page). You
should be able to answer questions based on reading it, and should be able to
write code using such a class (as you did in the Week 5 Lab Exercise).

* what is an abstract data type (adt)? What are some of the benefits of using a
well-designed adt class for a data structure within a program? Be comfortable,
too, with such terms as information hiding and abstraction.


