
CS 132 - Homework #1, Week #2 Lab Exercise p. 1
Spring 2005

CS 132 - Intro to Computer Science II - Spring 2005
Week #2 Lab Exercise and Homework #1

Week #2 Lab Exercise due: Wednesday, January 26th, END of lab
HW #1 due: Wednesday, February 2nd, beginning of lab

WEEK #2 LAB EXERCISE

TEAM exercise:
1. On a sheet of paper with your name on it, give the Big-O notation for the time complexity for an algorithm that

performs the following numbers of steps for an input of size N. Write these down, and compare them with at least one
other classmate's answers. If they differ, discuss why until you both agree on the answer.Write down the name of all
those you conferred with on your paper, then put one of your conferring-team member'sname on the NEXT list on the
board. I will meet with each conferring team.

(a) 8N33 - 9N ((8 times (N cubed)) minus (9 times N)

(b) 7log2N + 20 ((7 times(log-base-2 of N) plus (20))

(c) 7log2N + N ((7 times(log-base-2 of N) plus (N))

(d) N2 + 1000N + 123,456 ((N squared) plus (1000 times N) + (123,456))

(e) 538

INDIVIDUAL exercise:
2. Do Homework Problem #1 (below), steps (a) - (g). Note that the part of the point of this problem is to walk you

through the function design recipe process discussed in lecture, adding in the concepts of preconditions and
postconditions as discussed in Chapter 1 of the course text. You'll also be "building" the "fullest" version (I suspect) of
the course opening comment block. Not all functions/files will require this "full" version, as you also will see as you
proceed through this assignment, but some will. Finally, problem #1 sets up the beginning of an experiment to help
better illustrate the differences between two of the complexity categories discussed in lecture and Chapter 1 of the
course text.

When you complete (g), add your name to the Next: list on the board, and wait for me to get to you. I'll then look over
your opening comment block at that point, and let you know if you are on the right track. (You may safely proceed with
(h) and beyond while you are waiting for your turn.)

If you complete both of the above successfully before lab is over, then you have successfully completed the lab exercise.

HOMEWORK #1:

1. (Hint: many of the steps required here are have an example shown in the code provided as part of Problem #2...)

Consider a function seqlSearch that accepts an array of sorted integers (of any size), the array's size, and an integer.
seqlSearch is to see if that integer is within the passed array --- if it is, then it returns the index where that integer can
be found. If it is not within the array, it returns -1. Note its name --- you should perform this search in a sequential
manner, checking each element in the array in turn. However, you may stop before reaching the end of the array when
it is appropriate to do so. (Consider: In what case(s) is it appropriate to do so? And in what case(s) must you search the
entire array?)

Create a file seqlSearch.cpp, and begin an opening comment block with:

// File: seqlSearch.cpp
// Name: type your name here
// last modified: type date created or last modified here

Note: you may "border" this block in whatever style you'd like. You may also make the opening comment block a



CS 132 - Homework #1, Week #2 Lab Exercise p. 2
Spring 2005

single multi-line comment, if you prefer. But if you do so, modify the additions to the comment block specified below
accordingly. (And note: there are basic templates for a number of opening comment block types available from the‟ ‟ ‟ ‟
public course web page, under 132 opening comment block templates . These can be copied-and-pasted for your‟ ‟
convenience.)

Now, add to this as follows:

(a) for a passed array of size N, what is the big-O complexity for the average-case time complexity for function
seqlSearch? (Within the function's opening comment block, include:

// avg case time complexity:
...followed by your answer. (This will not always be part of a function's opening comment block --- it is here as
part of our coverage of Big-O notation.)

Consider: if you have N items to potentially search, how many will you look at, on average?

(b) What is the contract for seqlSearch? Within the function's opening comment block, include:
// Contract:

...followed by the contract (using the format shown in lecture, and shown in the example code provided with
problem #2 below).

(c) Now, you should be ready to write seqlSearch's header (first line of its implementation). It should, of course,
follow the opening comment block --- but you should also copy that header, followed by a semicolon, in a file
seqlSearch.h. This header file should have the following header-file opening comment block:

// Header file for function seqlSearch
// Name: type your name here
// last modified: type date created or last modified here

Note that this, too, is available from 132 opening comment block templates --- AND this template also includes‟ ‟
the skeleton for the required #ifndef use you are expected to use for header files this semester.

(d) Write a purpose statement for seqlSearch; within the function's opening comment block, include:
// Purpose:

...followed by this purpose statement. You are required to use your parameter names appropriately within this
purpose statement.

(e) What are the preconditions for seqlSearch? There are certain assumptions about the arguments that must be true
for this function to work; what are they? Within the function's opening comment block, include:

// preconditions:
...followed by the preconditions. (Note that you do not need to include aspects that are guaranteed, in a sense, by
C++ syntax --- you know it must be called using 3 arguments of compatible type, for example. But, given that,
what *must* be true of these arguments for this function to be able to perform its task?)

Note that, for preconditions where it is reasonably easy to do so, you are expected to use assert in your
implementation, near the beginning of the function (or method), to ensure that that precondition holds.

(f) What are the postconditions for seqlSearch? That is, if the preconditions are true when seqlSearch is called, what
can you say will be true when seqlSearch is finished executing? Within the function's opening comment block,
include:

// postconditions:
...followed by the postconditions.

(g) Write appropriate examples for seqlSearch. Part of what I am looking for here is example coverage --- what are
the major "cases" that you should include? Within the function's opening comment block, include:

// Examples:
...followed by your examples, written in the form of conditional equalities:

seqlSearch(explicit example arguments sep'd by commas) == exp'd return val
(That is, it looks like a "real" call to this function, except you have a choice in how you express the example array:



CS 132 - Homework #1, Week #2 Lab Exercise p. 3
Spring 2005

you may either say something like "for arr1 = { specific values }", and then use arr1 in the examples following, or
you can type the example argument array within the example calls in the form you'd use in initializing an array in
its declaration: { specific values })

Please ASK ME during lab if this is not clear! Sometimes, for Examples sections, we'll have to just describe what
should happen for the examples, but when we can, we will express them as logical expressions such as this.
Again, there's an example of this in Problem #2's example code, if you'd like to refer to it.

(h) Now, write the body for seqlSearch. Be sure to indent any statements within any { } by at least four spaces, use
descriptive identifiers, use blank lines for readability, add appropriate comments --- all of the basic style standards
you should have learned in your first programming course.

(i) Finally, write test_seqlSearch.cpp, a main function whose purpose is to test seqlSearch.cpp. For this simple
testing program, here is the basic testing-program opening comment block (a template for which is also available
at 132 opening comment block templates ):‟ ‟

// File: test_seqlSearch.cpp
// Name: type your name here
// last modified: type date created or last modified here
//
// Purpose: tester for function seqlSearch

This tester program should set up and run the examples you included in seqlSearch's opening comment block,
with one slight twist: set up the arrays and make the calls to seqlSearch, but do not print the returned results of
those calls to the screen. Instead, print a message to the screen indicating that 1's mean passed tests and 0's mean
failed tests, and then print the results of comparing each returned result with its expected result. That is, you hope
to see results such as the following as a result of running program test_seqlSearch:

Testing function seqlSearch...
1's mean test passed, 0's mean test failed:
-------------------------------------------
1
1
1
1

(HINT: you can PRINT the result of a logical comparison!! That's the most straightforward way to produce the
above. Avoid the if-statement-for-every-test-to-print-test-result approach...)

Ask me now if you do not know what I mean here! And, be sure that this main (and all main functions that you
write for this course) returns EXIT_SUCCESS when it is successfully complete, instead of simply returning 0.

(j) Compile, test, run, debug, repeat as necessary --- when you are satisfied with your code, run:
test_seqlSearch > prob1_out

...to create an example output to turn in. Don't submit your code to me yet, however.

2. Now, since we haven't quite gotten to discussing recursion further yet, I'll go easy on you and give you the following
recursive version of binary search, which I'll call binSearch. (This is one implementation of the "phone book search"
that we discussed in lecture.)

//------------------------------------------------------
// File: binSearch.cpp
// Name: Sharon Tuttle
// last modified: 1-27-04
//
// avg case time complexity: you'll need to fill this in...
//



CS 132 - Homework #1, Week #2 Lab Exercise p. 4
Spring 2005

// Contract: binSearch : int[] int int int -> int
//
// Purpose: See if val is contained within ordered array
// valArr within the range of indices
// [leftIndex, rightIndex]; return the index
// where found if so, and -1 if not.
//
// preconditions:
// * the elements within valArr are in ascending order;
// * there are no duplicate values in valArr;
// * leftIndex is in the range [0, size of valArr];
// * rightIndex is in the range [0, size of valArr];
//
// postconditions:
// * returns -1 if val is not in the range [leftIndex, rightIndex]
// * returns i if valArr[i] == val
//
// Examples: if arr1 == {1, 3, 8, 27, 56, 77, 78, 79, 100}:
// binSearch(arr1, 0, 8, 50) == -1
// binSearch(arr1, 0, 8, 150) == -1
// binSearch(arr1, 0, 8, 0) == -1
// binSearch(arr1, 0, 8, 1) == 0
// binSearch(arr1, 0, 8, 100) == 8
// binSearch(arr1, 0, 8, 56) == 4
//---------------------------------------------------------------------

#include <iostream>
#include <cmath>
#include <cassert>
using namespace std;

int binSearch(int valArr[], int leftIndex, int rightIndex, int val)
{

int midIndex; // index of the middle element in this range

// which preconditions can we reasonably test with assert
// statements before beginning?
assert(leftIndex >= 0);
assert(rightIndex >= 0);

// base case #1 --- is there anything to search?
if (rightIndex < leftIndex)
{

// element was NOT found --- return -1, failure
return -1;

}

// base case #2 --- there is only ONE element to search
else if (rightIndex == leftIndex)
{

if (valArr[leftIndex] == val)
{

// element FOUND! return its index
return leftIndex;

}
else
{

// element NOT in array --- return -1, failure



CS 132 - Homework #1, Week #2 Lab Exercise p. 5
Spring 2005

return -1;
}

}

// if get here --- there's still more to search;
else
{

// look at element in MIDDLE of this range;
midIndex = static_cast<int>(ceil(

leftIndex +
(static_cast<double>

(rightIndex - leftIndex)/2)
));

// base case #3 --- element IS in the middle;
if (valArr[midIndex] == val)
{

return midIndex;
}

// element is NOT in the middle...

else
{

// recursive case #1: val is LESS THAN
// middle value;
// continue looking in LEFT of range;
if (val < valArr[midIndex])
{

return binSearch(valArr,
leftIndex, midIndex-1,
val);

}

// recursive case #2: val is MORE THAN
// middle value;
// continue looking in RIGHT of range;
else
{

return binSearch(valArr,
midIndex+1, rightIndex,
val);

}
}

}
}

(a) Copy the above into a file binSearch.cpp. You can paste it from the posted version on the public course web page
or from the electronic version of this handout, if you do not want to type it in --- BUT note that you need to
replace the italicized text by hand yourself, giving the average case time complexity for binSearch on an array of
N elements using big-O notation.

(How many of the elements are thrown out during each pass? Consider your reading so far on big-O and‟ ‟
complexity...)

(b) Create the appropriate header file binSearch.h, using the same style of header-file opening comment block used
for seqlSearch.h in problem #1.



CS 132 - Homework #1, Week #2 Lab Exercise p. 6
Spring 2005

(c) Create the appropriate tester program test_binSearch.cppusing the same style of testing-program opening
comment block and same approach as used for test_seqlSearch.cpp in problem #1. Be sure to set up and run all
of the Examples given in binSearch's opening comment block, and of course the desired output should look like
this when you run this and print the results of comparing the actual execution results with the expected run results:

Testing function binSearch...
1's mean test passed, 0's mean test failed:
-------------------------------------------
1
1
1
1
1
1

(d) Compile, test, run, debug, repeat as necessary --- when you are satisfied with your code, run:
test_binSearch > prob2_out

...to create an example output to turn in. Don't submit this code to me yet, however, either.

3. You now have tested versions of sequential search and binary search for an ordered array of integers. Let's see if we
can see, first-hand, some of the practical differences between algorithms with the different time complexities exhibited
by these two examples.

We need two things to really see this. First, consider the examples we ran above: only 8 elements! That's not a big
enough N to really get the point across. We need a bigger array. Second, how will we "see" the difference in
performance?

For the first point, we need to build a really big array --- say, 1000 integers. But, you should be able to use a loop to do
this. I'll leave it to you how to fill it, as long as the resulting array is guaranteed to contain at least 1000 increasing,
distinct integers that are not simply consecutive. (That is, the elements cannot be 0-999 --- there need to be some
"gaps", some integers between the integers within the array.)

That addresses the first point. What about the second? We need to modify/”instrument” seqlSearch and binSearch so
that they'll count how many comparisons they make, as a rough measure of the amount of work they are doing.

That is, modify your seqlSearch from problem #1, adding a counter that starts out at 0, and is incremented when the
desired value is compared to an element within the passed array. Right before it returns its result, it should print the
number of comparisons to the screen:

seqlSearch # comparisons: value

(Not elegant, but it will do for our purposes.) Rerun test_seqlSearch; you should then see the above before each 1
resulting from one of its tests.

Now, this isn't going to work so well for binSearch --- because of its recursive calls, we'd need to actually add a
parameter to count the comparisons, and it would get more complicated than I want for this assignment. Fortunately,
this behaves well enough (even with 1000 elements) that we can get away with the following kluge: note that each call
essentially compares one element (the one in the middle) with the desired value; so, the number of recursive calls made
is roughly the number of comparisons. Simply add a statement to the beginning of the function that prints "called
binSearch" along with the leftIndex and rightIndex of that call:

binSearch called with leftIndex: val and rightIndex: val

This is a simple change, but it does modify the code, so add your name after mine in binSearch's opening comment
block, change the last-modified date appropriately, and make this addition. And, rerun your test_binSearch and see the
result (you'll now see how often binSearch is called before each of the 1's indicating a successful execution --- you'll
see a line printed for each recursive call, and how leftIndex and rightIndex converge on the desired element if it is
there.)



CS 132 - Homework #1, Week #2 Lab Exercise p. 7
Spring 2005

Now, we are ready for our test. Write a program in file bigOPlay.cpp that builds an array of 1000 increasing-but-
distinct elements, and then calls BOTH of the modified versions of seqlSearch and binSearch for EACH of the
following scenarios, preceding EACH scenario with a message printed to the screen describing which scenario it is
before making the TWO calls to seqlSearch and binSearch for that scenario:
* an element smaller than any in the array
* an element larger than any in the array
* an element between some elements within the array but not actually in the array
* an element "early" in the array
* an element "late" in the array.

(that is, you'll print a scenario description, THEN call seqlSearch and binSearch for that scenario;
THEN print the NEXT scenario description, THEN call seqlSearch and binSearch for THAT scenario,
ETC.)

What kind of opening comment block should bigOPlay have? It needs a bit more than our simple testers, but less than
our functions, and less than a main that actually accepts user input. This should suffice:

// File: bigOPlay.cpp
// Name: type your name here
// last modified: type date created or last modified here
//
// Purpose: write an appropriate purpose statement here. Obviously there are
// no parameter names to include, though, nor example input to describe...
//

Compile, test, run, debug, repeat as necessary --- when you are satisfied with your code, run:
bigOPlay > prob3_out

...to create an example output to turn in.

You should now be ready to submit the required files:

prob1_out, prob2_out, prob3_out,
seqlSearch.h, seqlSearch.cpp, test_seqlSearch.cpp (as they are after problem #3)
binSearch.h, binSearch.cpp, test_binSearch.cpp (as they are after problems #3)
bigOPlay.cpp

In the cs-server directory where you have final versions of all of these files, run the program‟ ‟ ~st10/132submit . It will
walk you through the homework submission process, and ask you to type in the name of each file being submitted. Only
files submitted using this tool by the deadline will be accepted for credit.

[IF YOU ENCOUNTER ANY PROBLEMS ACCESSING cs-server, LET ME KNOWA.S.A.P.This is even worthy of a
brief phone message to 825-7727 (my home phone), so I can contact the lab administrator as promptly as possible. It is
another example of the importance of starting assignments early. One more comment in this regard: what if cs-server has a
burp early in the week? I would strongly advise beginning your development on paper, or on redwood or sorrel (whose g++
versions are slightly older, so be careful!) or Dev-C++, and then using sftp to transfer your work-in-progress to cs-server
when you are able.]


