
CS 132 - Homework #7 p. 1
Spring 2005

CS 132 - Intro to Computer Science II - Spring 2005
Week #9 Lab Exercise and Homework #7

Week #9 Lab Exercise due: Wednesday, March 23rd, END of lab
HW #7 due: Wednesday, March 30th, beginning of lab

WEEK #9 LAB EXERCISE
1. INDIVIDUAL-answer, TEAM-verification exercise:

On a sheet of paper with your name on it, individually answer all of the questions below. Once you have written out
your initial answers by yourself, then compare them with at least one other classmate's answers. If they differ, discuss
why until you both agree on the answer (and change the answer on your paper accordingly if appropriate). Write
down the name(s) of all those you conferred with on your paper, then put your name on the "Next:" list on the board
to have your answers checked.

Consider the following sequence of stack and queue operations; I want you to hand-execute them, to see if you are
comfortable with how stacks and queues work. (Assume that, as this begins, aStack is an empty stack of integers, and
aQueue is an empty queue of integers.) Their implementation is unimportant, however DO note that they do
correspond to the stack and queue pseudo-UML's discussed in lecture (and available from the course web page).

(Follow the directions carefully; the point here is to make sure you are comfortable with how a stack and queue
"behave".)

stack<int> aStack;
queue<int> aQueue;
int looky1, looky2, looky3;

aStack.push(2);
aStack.push(4);
aStack.push(6);
aStack.push(8);

/* POINT A: write POINT A, and draw aStack's CONTENTS at this point, clearly
labeling the stack's TOP */

aStack.pop();
aStack.push(10);
aStack.pop();

/* POINT B: write POINT B, and draw aStack's CONTENTS at this point, clearly
labeling the stack's TOP */

looky1 = aStack.get_top();
aStack.pop();

looky2 = aStack.get_top();
aStack.pop();

looky3 = aStack.get_top();
aStack.pop();

/* POINT C: write out the output of the following statements at this point: */

cout << "POINT C" << endl;
cout << "looky1: " << looky1 << endl;
cout << "looky2: " << looky2 << endl;
cout << "looky3: " << looky3 << endl;

CS 132 - Homework #7 p. 2
Spring 2005

aQueue.enqueue(2);
aQueue.enqueue(4);
aQueue.enqueue(6);
aQueue.enqueue(8);

/* POINT D: write POINT D, and draw aQueue's CONTENTS at this point, clearly
labeling the queue's FRONT and REAR */

aQueue.dequeue();
aQueue.enqueue(10);
aQueue.dequeue();

/* POINT E: write POINT E, and draw aQueue's CONTENTS at this point, clearly
labeling the queue's FRONT and REAR */

looky1 = aQueue.get_front();
aQueue.dequeue();

looky2 = aQueue.get_front();
aQueue.dequeue();

looky3 = aQueue.get_front();
aQueue.dequeue();

/* POINT F: write out the output of the following statements at this point: */
cout << "POINT F" << endl;
cout << "looky1: " << looky1 << endl;
cout << "looky2: " << looky2 << endl;
cout << "looky3: " << looky3 << endl;

Youmust turn in your sheet of paper with your name, your answers, and the name(s) of those you
confirmed/discussed your answers with by the time that lab is over.

The above must be completed and checked before the end of lab.

HOMEWORK #7:

1. On the course web page, with this HW #7 handout, you'll find an implementation of the node class that does NOT
include the linked-list toolkit functions.

In a new directory 132hw07, transform this into a template class node, in files node.h and node.template. Write a
testing main function test_node.cpp for your resulting class that involves tests of at least two nodes with different
types of data, and redirect its ouput into 132hw07_1_out; you'll be submitting node.h, node.template,
test_node.cpp, and 132hw07_1_out

2. We'll continue, now, with some light implementation of stacks.

Consider the stack pseudo-UML provided in lecture, and stack.h and stack.template, which you copied over for the
lab exercise. These are a dynamic array implementation of that stack UML. Also consider your node template class
from problem #1.

Using these as a basis, in directory 132hw07, create a stack.h and a stack.template which are an implementation of
this same stack UML using linked lists instead --- BUT it MUST use the node class from problem #1, and it cannot
use the linked-list toolkit functions described in the text.

(So, the text's linked list implementation can help you in understanding what you need to do, but you cannot use the
linked-list toolkit functions that they use in their version.)

CS 132 - Homework #7 p. 3
Spring 2005

Just to make sure we're clear on this: your code should be indented and documented using the same style currently
seen in the provided stack.h and stack.template. You may not change the stack pseudo-UML provided.

Now, adapt the lab exercise's ck_them.cpp into ck_stack.cpp, that #include's your new version of stack.h and leaves
out all queue-related statements. When you are satisfied with your program, run:

ck_stack > 132hw07_2_out

... and e-mail to me your resulting files stack.h, stack.template, ck_stack.cpp,and 132hw07_2_out.

3. Youwill probably not be shocked that we are now going to proceed with some light implementation of queues.

Consider the queue pseudo-UML provided in lecture, and queue.h and queue.template, which you copied over for
the lab exercise. These are a linked implementation of that queue UML. Also consider your node template class from
problem #1.

Using these as a basis, within directory 132hw07, create a queue.h and queue.template, which are an
implementation of this same queue UML using linked lists instead --- BUT it MUST use the node class from
problem #1, and it cannot use the linked-list toolkit functions described in the text.

Just to make sure we're clear on this: your code should be indented and documented using the same style currently
seen in the provided queue.h and queue.template. Youmay not change the queue pseudo-UML provided.

Now, adapt the lab exercise's ck_them.cpp into ck_queue.cpp, that #include's your new version of queue.h and
leaves out all stack-related statements. When you are satisfied with your program, run:

ck_queue > 132hw07_3_out

... and e-mail to me your resulting files queue.h, queue.template, ck_queue.cpp,and 132hw07_3_out.

4. NOTE: Youmay use either the provided stack.h/stack.template OR your stack.h/stack.template from problem #1
for this problem. It is YOUR CHOICE. (Since both use the same UML, either should work! BUT if you use the
provided one, you'll need to put #4 in a DIFFERENT directory...)

For this problem, postfix notation means that an operator follows its operands --- that is, to add 3 and 5, I'd say 3 5 +.
To multiply the sum of 3 and 5 and the difference of 7 and 4 ((3+5)*(7-4)), I'd write 3 5 + 7 4 - *.

It turns out (and I believe the chapter mentions this, too) that stacks are quite lovely for evaluation of expressions
written in postfix notation. If something is an operand, you push it on the stack. If something is an operator, you top-
then-pop the first two items on the stack, perform the given operation on the two operands items, and then push the
result back onto the stack. When you run out of expression, there should be but one item left on the stack: the result of
the operation. (This is if the postfix notation is well-formed, of course.)

We're going to keep this simple:
* the only operations will be +, -, *, /. (The / is integer division, note.)

* the only operands will be the single digits 0 - 9.

* write a function simplePost that returns bool and has two parameters:
* the first parameter is a string which contains a postfix expression

* the second parameter is a reference parameter, the integer result of the given postfix expression.

* simplePost returns true if the given postfix expression was "well-formed", and returns false if it is not. If it
returns false, the second parameter will not have been changed/set by simplePost. If it returns true, then the

CS 132 - Homework #7 p. 4
Spring 2005

second parameter will have been set to be the result of evaluating the postfix expression.

* for your Examples and test_simplePost.cpp, make sure that you include at least the following:
* at least the two examples given above
* at least one ill-formed expression
* other examples that you realize are important to more fully-test your function.
* (and any others you just feel like including...)

* note that:
* text p. 762 includes note of some useful character manipulation functions; I didn't have to #include

<cctype> to use them, but do so if you need to. (I had #include'd <iostream> in my playing, which might
include <cctype>.)

* isdigit(aChar) returns true if char aChar is a digit character (0-9)
* isspace(aChar) returns true if char aChar is a blank, tab, newline, or carriage return. (We're assuming that

simplePost takes a single string as its first parameter, though, remember --- so newlines and carriage
returns should not have to be worried about.)

* quick-n-sleazy conversion of a digit character to its int equivalent can be performed by "subtracting" the
digit character '0' from a digit character ---

const char DIGIT_ZERO = '0';

int intVersion;
char digitChar;

if (isdigit(digitChar))
{

intVersion = digitChar - DIGIT_ZERO;
}

Why, yes, a little helper function that does this conversion on-demand *would* be a lovely little helper
function... (And feel free to use other helper functions that occur to you --- a few of these can make
simplePost much "prettier" and clearer.)

When you are satisfied with your program, run:

test_simplePost > 132hw07_4_out

... and submit your resulting files simplePost.cpp, test_simplePost.cpp, 132hw07_4_out, and any helper functions
that you use.

5. NOTE: Youmay use either the provided queue.h/queue.template OR your queue.h/queue.template from problem
#2 for this problem. It is YOUR CHOICE. (Since both use the same UML, either should work! BUT if you use the
provided one, you'll need to put #5 in a DIFFERENT directory...)

Did you know that the set of palindromes is really a language? In computer science, a language is any set of strings
that meet some given criteria --- I can say that the language of palindromes is all strings for which the in-lecture
function isPalindrome returns true. And then, we can call isPalindrome a language-recognizer for that language,
because it can recognize if a string is a member of that lanuage or not.

Well, we need a simple queue problem, and this provides a simpler one than the quite-excellent car-wash simulation
already given in the chapter.

Consider the following strange little language: it consists of strings that contain exactly two lower-case a's, each of
which come at the beginning of identical strings (the rest of which contain NO a's). That is, the following are all
members of this language:

"abcdabcd", "aa", "arkark", "avonavon", "a blonde doga blond dog"

CS 132 - Homework #7 p. 5
Spring 2005

These are not:

"" (the empty string), "abca", "abac", "ababc", "alphaalpha" (because there can only be exactly 2 a's in strings of
this language), "baba" (because it doesn't start with a)

Write a function isMember that uses a queue appropriately to determine if the string passed to it is a member of this
strange little language or not. It should have only that one parameter, and should return true if the string is a member
of the language, and return false otherwise. It may only make one pass, total, through the passed string (although it
may "leave" early if it has determined that the string is indeed not a member of the language).

Write a main in test_isMember.cpp to run your examples and test your function.

When you are satisfied with your program, run:

test_isMember > 132hw07_5_out

... and submit your resulting files isMember.cpp, test_isMember.cpp, and 132hw07_5_out,

And, when you are satisfied with all of the above, make sure that you have submitted (using ~st10/132submit) your
versions of all of the following files:

node.h, node.template, test_node.cpp, 132hw07_1_out
stack.h, stack.template, ck_stack.cpp, 132hw7_2_out
queue.h, queue.template, ck_queue.cpp, 132hw07_3_out
simplePost.cpp, test_simplePost.cpp, 132hw07_4_out
isMember.cpp, test_isMember.cpp, 132hw07_5_out

