CS 132 - Homework #8 p.-1
Spring 2005

CS 132 - Intro to Computer Science II - Spring 2005
WEEK #11 LAB EXERCISE and Homework #8

Week #11 Lab Exercise due: Wednesday, April 6th, END of lab
HW #8 due: Wednesday, April 13th, 1:00 pm

WEEK #11 LAB EXERCISE

* On the course web page, you will find binary_tree node.h and binary tree node.template--- this
is a node class for a linked implementation of a binary tree. In the tradition of Savitch and Main's
nodeX.h, it also includes some "binary tree toolkit" functions.

Note that the .h file includes an explanation from Savitch and/or Main about how it returns
*references™ to pointers --- thus, the use of & in a number of the functions' return types.

Note that it also includes both const and non-const versions of the accessors/observers get data,
get_left, and get right; you may recall a similar issue in node.h. This, you may recall, is because
we need one version when we are permitted to change a node, and another version when we are not
permitted to change a node, when an accessor/observer returns a pointer to something; see p. 218-
221.

* mind you, we want to hide this implementation within an ADT. binary_tree.h and
binary_tree.template attempt to do so. A pseudo-UML diagram for this binary tree ADT has also
been posted. You should read this carefully; note the use of a "current node" concept to hide how
the tree is actually implemented.

1. Create a file tree_play.cpp that contains a main() function that uses template class binary_tree to:
* create an empty binary tree name_tree able to contain strings;

put a name of your choice into name_tree's root;
put another name of your choice as name_tree's left child;

put another name of your choice as name _tree's right child;

* call print_tree with a depth of 1 to show name_tree's contents. (notice that it printed the tree
"sideways")

Before getting to the next steps in tree_play.cpp... Note, again, that this tree implementation has a

concept of a "current node" --- you can retrieve the current node's contents, change them, and more,
and you can change the current node via shifting to another node. So, your main function should
also:

* call shift to root for name tree, then print what name should be in the root, then call retrieve
for name_tree within a statement printing the value at the current tree node (which should be
the root, thanks to shift to root).

* call shift_left for name tree, then print what name should be in the root's left child, then call
retrieve within a statement printing the value at the current tree node (which should be left
child of the root, thanks to shift left from previous current node).

* call shift to root and then shift right for name tree, then print what name should be in the
root's right child, then call retrieve within a statement printing the value at the current tree node

CS 132 - Homework #8 p.-2
Spring 2005

(which should be the right child of the root, thanks to the two shifts done).
Hopefully, these will give a you a little light familiarity with this binary tree ADT.

When you are happy with this, put your name on the "Next:" list to get your work checked over.
Your work must be completed and checked over before the end of lab.

HOMEWORK #8:

1. What if you happened to fill a binary tree instance so that it met the binary search tree property?
Then, using binary_tree's member functions, you could quite reasonably perform a binary search on
that tree to see if a given target was within it.

Create a template function tree_search that accepts a binary_tree of some type and a target of the
same type. It assumes that the type of items within the tree have <, >, and == implemented for that
type, and it assumes that the binary tree passed does indeed satisfy the binary search tree property.
It returns true if the target is indeed within the tree, and returns false if it is not. (Notice that passing
an empty tree should be "legal" with this function --- it should simply return false, then, since the
target obviously is not within an empty tree.)

Note: expressing the tree(s) used in the Examples can be tricky here! I'll accept a readably-typed
depiction of the trees (each labeled with its name, of course), followed by the usual calls-and-what-
they-return. Be sure to test an empty tree, seeking at least one value that is a leaf, seeking at least
one value that is a non-root interior node, seeking at least one value that is the root, and seeking at
least one value smaller than any in the tree, seeking at least one value greater than any in the tree,
and at least one value "within" the range of the tree but not in the tree.

When you are happy with your tree_search.template and test_tree search.cpp, run:

test_tree search > 132hw8_1 out
...and submit tree_search.template, test_tree_search.cpp, and 132hw8_1_out.
2. Youmight notice that shift up is not an operation in the current binary_tree.

To more easily support this operation, a parent pointer within the binary tree node would be
useful. That requires modifying binary_tree node accordingly, however.

Modify binary_tree_node.h, binary_tree_node.template, binary_tree.h, and
binary_tree.template so that each tree node now has a pointer to its parent (which is set to NULL
for a root, of course), and add member function shift up to our binary tree template class. Also
change the current implementation of has_parent to make direct use of this new pointer. (Be
careful --- when does the parent need to be changed? updated?)

(another tip: be careful with tree_copy! The statements have to be reordered from their current
ordering so that you create the new root node BEFORE copying the left and right subtrees;
OTHERWISE, new left and right pointers cannot be made to point to the new parent!
Remembering those modifier member functions can be helpful here.)

CS 132 - Homework #8 p.-3
Spring 2005

To your tree_play.cpp from the lab exercise, add at least two more levels to your tree (although the
tree does not have to be full nor complete!), and shift to the lowest level, then shift up repeatedly to
the root, each time (after each shift up call) printing the expected and the actual value of the node
that is now the current node.

When you are satisfied, run:

tree play > 132hw8 2 out

...and (after problem #3) submit your binary_tree node.h, binary tree node.template,
binary_tree.h, binary_tree.template, tree play.cpp, and 132hw8 2 out.

3. Let's make another change to binary_tree node. Let's add a non-member "binary tree node
toolkit" template function named tree depth that computes the depth of a (sub)tree, given a
pointer to the node that is the root of that (sub)tree.

Your function tree_depth must be recursive; and, you need at least two base cases in your solution.
(Remember, too, that a tree with 1 node is considered to have depth 0, and that an empty tree is
considered to have depth -1.) HINT: If your function's body is more than 6 lines long (not counting
curly-brace lines), you have gone astray...

Of course, once you have tree depth, it should be trivial to add a member to binary_tree that
returns the depth of the subtree beginning at the "current node". Let's call this new member
get _tree depth, and add it to class binary_tree.

I'm hoping it will suffice, to at least somewhat test both of these, to add to tree play calls to

get_tree_depth on at least :

* an empty tree,

a tree with only 1 node,

a tree with at least depth 3 whose "current node" is the root,

a tree with at least depth 3 whose "current node" is a non-root interior node, and

a tree with at least depth 3 whose "current node" is a leaf.

(I can think of a lot more possible interesting permutations, actually, so feel free to add to these if
you'd like a more robust test.)

* ¥ X ¥

When you are satisfied, run:

tree play > 132hw8_ 3 out

...and submit your binary_tree_node.h, binary_tree_node.template, binary_tree.h,
binary_tree.template, tree_play.cpp, and 132hw8_3_out.

And, when you are satisfied with all of the above, submit them using ~st10/132submit on cs-server.

tree_search.template, test tree search.cpp, 132hw8 1 out,
binary tree node.h, binary tree node.template,
binary_tree.h, binary_tree.template, tree_ play.cpp,
132hw8 2 out,

132hw8 3 out

