
CS 132 - Homework #9 p. 1
Spring 2005

CS 132 - Intro to Computer Science II - Spring 2005
WEEK #12 LAB EXERCISE and Homework #9

Week #12 Lab Exercise due: Wednesday, April 13th, END of lab
HW #9 due: Wednesday, April 20th, 1:00 pm

Purpose: to implement heap and heapsort; to become more familiar with an array-based implementation of a complete
binary tree

WEEK #12 LAB EXERCISE
On the public course web page, you will find a file heap.h, the .h file for a heap template class. This heap template class
includes, as a private data field, an instance of a complete_tree, a template class whose .h and .template files are also
available from the course web page. complete_tree is an array-based implementation of a complete binary tree.

Answer the following questions on paper; after coming up with your initial answers, you may discuss them with another
student before getting your answers checked, if you wish. When you are ready, put your name on the "Next:" list on the
board so that your answers can be checked.

1. Consider the implementation of the complete_tree template class provided along with this assignment.
(a) List the names of the accessor/observer methods provided by complete_tree.

______________________________________________________________________________________________

______________________________________________________________________________________________

______________________________________________________________________________________________

(b) List the names of the modifier methods provided by complete_tree.

______________________________________________________________________________________________

______________________________________________________________________________________________

______________________________________________________________________________________________

(c) List the types AND names of the private data fields used within complete_tree.

______________________________________________________________________________________________

______________________________________________________________________________________________

(d) What private methods are declared within complete_tree? List their names.

______________________________________________________________________________________________

______________________________________________________________________________________________

(e) Give the formula that this complete_tree implementation uses for determining the index of the parent of the
current node (assuming the index of the current node is stored within current_index).

______________________________________________________________________________________________

(f) Give the formula that this complete_tree implementation uses for determining the index of the left child of the
current node (assuming the index of the current node is stored within current_index).

______________________________________________________________________________________________



CS 132 - Homework #9 p. 2
Spring 2005

(g) Give the formula that this complete_tree implementation uses for determining the index of the right child of
the current node (assuming the index of the current node is stored within current_index).

______________________________________________________________________________________________

2. Now consider the provided file heap.h, the declaration of the heap template class that you will be implementing for
part of HW #9 (as you'll see below).

(a) List the names of the accessor/observer methods to be provided by heap.

______________________________________________________________________________________________

(b) List the names of the modifier methods to be provided by heap.

______________________________________________________________________________________________

(c) List the types AND names of the private data fields that will be part of each heap instance.

______________________________________________________________________________________________

(d) What private methods are to be declared within heap? List their names.

______________________________________________________________________________________________

3. In lecture, we discussed the basic algorithms for inserting into and removing from a heap. For this problem, you are
going to show that you understand these basic algorithms.

Consider the following heap: 90

60 70

3 40 27

(a) Consider what should happen in order for 100 to be added to this heap.

On the back of one of this handout's pages or on a separate sheet of paper, write 3(a) and then draw the stages
that this heap goes through during the process of adding 100 to this heap. (You must give a snapshot of each
change to this heap that occurs in the process of adding 100 to it. The final picture will how the heap "ends up".)

(b) ASSUME that (a) has been done. Now we want to add 75 to the heap.

On the back of one of this lab assignment's pages or on a separate sheet of paper, write 3(b) and then draw the
stages that this heap goes through during the process of adding 75 to this heap. Again, you must give a
"snapshot" of each change to the heap that occurs.

(c) ASSUME that (a) and (b) have been done. Now add 14 to the heap, writing 3(c) and then drawing the stages
that the heap goes through during this process

(d) ASSUME that (a) - (c) have been done. Now REMOVE the the maximum value in this heap, writing 3(d) and
then drawing the stages that the heap goes through during this process.

What value is returned by this remove_max operation? _______________________

(e) ASSUME that (a) - (d) have been done. Now, remove the maximum value in this heap again, writing 3(e) and
then drawing the stages that the heap goes through during this process.

What value is returned by this remove_max operation? ________________________



CS 132 - Homework #9 p. 3
Spring 2005

(f) ASSUME that (a) - (e) have been done. Now, remove the maximum value in this heap one more time, writing 3
(f) and then drawing the stages that the heap goes through during this process.

What value is returned by this remove_max operation? ________________________

When you are happy with all of your answers, put your name on the "Next:" list to get your work checked over. Your
work must be completed and checked over before the end of lab.

HOMEWORK #9:
1. You have already looked a bit at the provided file heap.h (during the lab exercise). You should see that there is a file

test_heap.cpp, a partial tester for the heap template class. Make copies of heap.h, test_heap.cpp, complete_tree.h,
and complete_tree.template to a directory on cs-server.

Implement heap.template for this heap.h. When you are done, compile test_heap.cpp and you can partially test your
heap implementation.

When you are happy with your heap.template, run:

test_heap > 132hw09_1_out

...and submit your heap.template and 132hw09_1_out.

2. What can you do with a heap? Well, use it to implement heapsort, for one thing!

Write a template function heapsort (in file heapsort.template) that expects an array of items and its size as its
parameters; it modifies the passed array as a result, using the heapsort algorithm described in lecture (and in the
course text) to modify the passed array so that its contents are in ascending sorted order. (As a template function, the
full function opening comment block --- complete with a suitable collection of examples! --- is expected, of course.)

(remember the basic pseudocode for heapsort of an array's elements ---
add all of the elements of the array into a heap,
while the heap is not empty, remove the heap's root, reheap, and add it to the array in the "next" spot)

Of course, you'll have to adapt the basic pseudocode based on the operations of this particular heap class. And, your
function must use the provided heap.h and your heap.template from Problem #1.

Write a test_heapsort.cpp that tests your template function (including testing all of your examples, following the
expected course testing standards...), and when you are happy with your code run:

test_heapsort > 132hw09_2_out

...and submit your resulting heapsort.template, test_heapsort.cpp, and 132hw09_out.

(Note: even if your heap.template is not up-to-snuff, you will receive substantial partial credit for problem #2 if you
turn in a version of heapsort.template and test_heapsort.cpp that DO run when I test them with my version of
heapsort.template; that is, if you are comfortable with heap.h's contents, you should still be able to write heapsort and
its tester, even if you cannot actually execute them yet...)

And, when you are satisfied with all of the above, submit them using ~st10/132submit on cs-server.

heap.template
132hw09_1_out.
heapsort.template
test_heapsort.cpp
132hw09_2_out


