
CS 132 - Homework #10 p. 1
Spring 2005

CS 132 - Intro to Computer Science II - Spring 2005
WEEK #13 LAB EXERCISE and Homework #10

Week #13 Lab Exercise due: Wednesday, April 20th, END of lab
HW #10 due: Wednesday, April 27th, 1:00 pm

Purpose: thinking/experience with hashing and hash tables

WEEK #13 LAB EXERCISE
Answer the following questions on paper; after coming up with your initial answers, you may discuss them with another
student before getting your answers checked, if you wish. When you are ready, put your name on the "Next:" list on the
board so that your answers can be checked. [Note: check carefully! There will be points docked for errors, this time, to
encourage you to double-check carefully *before* getting your work checked.]

[Note: a calculator may be handy here! There is one available on the NHW 244 computers, in a pinch, and I think that
there's an option to "expand" it into a "scientific" calculator...]

1. The following represents a hash table implemented using open addressing and linear probing. Its table_size is 13
(as you can see) and its hash function is simply:

hash(int key) -> key % table_size (it s good enough for Savitch and Main...!)‛
0 1 2 3 4 5 6 7 8 9 10 11 12

"Fill in" the above hash table appropriately, inserting the following items (in the order shown):

988, 350, 367, 168, 694, 182, 820, 202, 644, 422

(Note: I generated the above using a pseudo-random-number generator, asking for values in the range
[0, 1000), I chose 10 values because that will give this hash table a load factor of 77%. I was curious how this would
work... 8-))

hash(988) __________ hash(694) __________ hash(202) __________

hash(350) __________ hash(182) __________ hash(644) __________

hash(367) __________ hash(820) __________ hash(422) __________

hash(168) __________

Do we see clustering above? ______________

Now, try to retrieve each value. How many values did you need to search, including the desired value once found?
(That is, give the actual number of table elements examined in each successful search... 8-))

988 ________ 694 ________ 202 ________

350 ________ 182 ________ 644 ________

367 ________ 820 ________ 422 ________

168 ________

Amongst these 10 values for these 10 searches, then --- what was the average number of table elements examined in
these successful searches?

CS 132 - Homework #10 p. 2
Spring 2005

2. The following represents a hash table implemented using open addressing and double hashing. It's table_size is 13
(as you can see) and its hash functions (also from Savitch and Main) are:

hash1(int key) -> key % table_size

hash2(int key) -> 1 + (key % (table_size - 2)) (note: 11, 13 ARE twin primes)

0 1 2 3 4 5 6 7 8 9 10 11 12

"Fill in" the above hash table appropriately, again inserting the following items (in the order shown). (Be careful ---
remember that, in double-hashing, you only call hash2 if hash1 leads to a collision --- and then hash2 is providing
how much to add to the current collided index. ASK ME if this is not clear to you.)‟ ‟
988, 350, 367, 168, 694, 182, 820, 202, 644, 422

(note: below, you only need to fill in hash2 if you NEED it. Put a dash or X for hash2 if you do NOT need it.)

hash1(988) __________ hash1(694) __________ hash1(202) __________

hash2(988) __________ hash2(694) __________ hash2(202) __________

hash1(350) __________ hash1(182) __________ hash1(644) __________

hash2(350) __________ hash2(182) __________ hash2(644) __________

hash1(367) __________ hash1(820) __________ hash1(422) __________

hash2(367) __________ hash2(820) __________ hash2(422) __________

hash1(168) __________

hash2(168) __________

Now, try to retrieve each value. How many values did you need to search, including the desired value once found?
(That is, give the actual number of table elements examined in each successful search... 8-))

988 ________ 694 ________ 202 ________

350 ________ 182 ________ 644 ________

367 ________ 820 ________ 422 ________

168 ________

Amongst these 10 values for these 10 searches, then --- what was the average number of table elements examined in
these successful searches?

CS 132 - Homework #10 p. 3
Spring 2005

3. And, finally...

The following represents a hash table implemented using buckets and chaining. It's table_size is 13 (as you can see)
and its hash function is still:

hash(int key) -> key % table_size

0 1 2 3 4 5 6 7 8 9 10 11 12

"Fill in" the above hash table appropriately, again inserting the following items (in the order shown).

988, 350, 367, 168, 694, 182, 820, 202, 644, 422

ASSUMPTION: new elements are added to the HEAD of a bucket's linked list. [Yes, it is annoying in a pencil-and-
paper situation, but it is also how this is often done...] Your results must reflect this assumption.

hash(988) __________ hash(694) __________ hash(202) __________

hash(350) __________ hash(182) __________ hash(644) __________

hash(367) __________ hash(820) __________ hash(422) __________

hash(168) __________

Now, try to retrieve each value. How many values did you need to search, including the desired value once found?
(That is, give the actual number of table elements examined in each successful search... 8-))

988 ________ 694 ________ 202 ________

350 ________ 182 ________ 644 ________

367 ________ 820 ________ 422 ________

168 ________

Amongst these 10 values for these 10 searches, then --- what was the average number of table elements examined in
these successful searches?

HOMEWORK #10:

1. There are a number of files posted on the public course web page along with this handout. Copy them into your new
directory on cs-server that is going to hold this homework's files.

CS 132 - Homework #10 p. 4
Spring 2005

You should now have files named node.h, node.template, hashtable.h, hashtable.template, stock_item.h, and
test_stock_item.cpp.

The stock_item files contain the definition for a very simple class representing a stock item. Read it over and get
comfortable with it --- and notice that it meets the criteria for a RecordType, suitable for being stored in a hashtable
instance.

BUT --- where is its .cppfile? It is so simple, everything is done in-line within stock_item.h!

And so, when you compile test_stock_item,cpp, you don't have to include stock_item.cpp (which is good, since it is
nonexistent.) Compile it, and show me you've successfully tested it by running:

test_stock_item > 132hw10_1_out

...and submit your 132hw10_1_out.

2. Now, I've provided you with a hashtable.h that declares a template class hashtable able to hold RecordType's, where
a RecordType is expected to have a member function get_key() that returns an int, assumed to be a unique key for a
record instance. I have also provided node.h and node.template (which now does include the linked-list toolkit
functions described in the course text).

Yes, hashtable is to be a buckets-and-chaining hash table, where the buckets are indeed linked lists of
node<RecordType>.

Now, I've also given you the beginning of hashtable.template --- you are to finish "filling it in". (Look for YOU
FILL IN... 8-)) I'm not promising an absence of typos, either --- start early, and e-mail me about "existing" code
oddnesses, if you notice any.

3. You, of course, need to test your hash table implementation a bit.

Write try_hashtable1.cpp that:

* asks a user to enter in as many stock keys, names, quants, and prices as they wish --- you insert each into
a hashtable.

* then shows the user the resulting hashtable contents (using print_hashtable)

* then allows them to enter keys for as many stock items as they wish, and says for each if it is in stock, and if so
its details.

* then asks them if they wish to remove any stock items --- if so, it lets them enter as many stock item keys as they
wish, removing each corresponding stock_item.

* it then again allows them to enter keys for as many stock items as they wish, and says for each if it is in stock,
and if so its details.

* it then shows the user the resulting hashtable contents (using print_hashtable)

Then, write try_hashtable2.cpp that hard-codes in several actions for each of the above categories, but with no user
input, so you can generate an output file...! (try_hashtable2 > 132hw10_2_out)

Turn in try_hashtable1.cpp, try_hashtable2.cpp, hashtable.template, and 132hw10_2_out.

And, when you are satisfied with all of the above, submit them using ~st10/132submit on cs-server:

132hw10_1_out
hashtable.template
try_hashtable1.cpp, try_hashtable2.cpp, 132hw10_2_out

