CS 132 - Homework #11 p.-1
Spring 2005

CS 132 - Intro to Computer Science II - Spring 2004
WEEK #14 LAB EXERCISE and Homework #11

Week #14 Lab Exercise due: Wednesday, April 27th, END of lab
HW #11 due: Wednesday, May 4th, 1:00 pm

Purpose: Thinking/experience with graphs

WEEK #14 LAB EXERCISE

Answer the following questions on paper; after coming up with your initial answers, you may discuss them with another
student before getting your answers checked, if you wish. When you are ready, put your name on the "Next:" list on the
board so that your answers can be checked. [Note: check carefully! There will be points docked for errors, this time, to
encourage you to double-check carefully *before* getting your work checked.]

Consider the following pseudocode for depth-first search:

// PSEUDOCODE - RECURSIVE VERSION
// dfs
// Purpose: traverses a graph g beginning at vertex v by using a depth-first
// search:
// Recursive version
template <typename Item>
void dfs (graph<Item> g, Item V)
{
// mark v as visited
g.mark(v);
cout << "visited: " << v << endl;

for (each unvisited vertex u adjacent to v)
{

dfs(g, u);
}

Assume further that you have the following graph gl:

B

1. Write this graph in G = {V, E} form.

CS 132 - Homework #11 p.-2
Spring 2005

2. Assume that, for professorial sanity, when you have a choice of adjacent unvisited nodes, you choose the next node in
increasing alphabetical order.

Then, write what could be printed to the screen as a result of:

(@) dfs(gl, 'G'"); (b) dfs(gl, 'F');

3. Now consider this pseudocode for breadth-first-search:

// PSEUDOCODE

// bfs

// Purpose: traverses a graph beginning at vertex v by using a breadth-first
// search

template <typename Item>
void bfs(graph<Item> g, Item v)
{

queue<Item> myQ;

Item w, u;

// add v to queue and mark it
myQ.enqueue (v) ;

g.mark(v);

cout << "visited: " << v << endl;

while (!myQ.empty())
{

w = myQ.dequeue();

// loop invariant: there is a path from vertex w to every vertex in
// the queue myQ
for (each unvisited vertex u adjacent to w)
{
// mark u as visited
g.mark(u) ;
cout << "visited: " << u << endl;
myQ.enqueue (u) ;

CS 132 - Homework #11 p.-3
Spring 2005

Again, assume that, for professorial sanity, when you have a choice of adjacent unvisited nodes, you choose the next
node in increasing alphabetical order.

And now show what would be printed for the calls:

(@ bfs(gl, 'G"); (b) bfs(gl, 'F');

HOMEWORK #11:

1. Now, copy all of the files accompanying this assignment handout on the public course web page into your desired
current working directory on cs-server.

Younow have a (possibly-buggy, hopefully-not) implementation of a template class graph, implemented using
adjacency lists (which can be done in a way rather reminiscent of a buckets-and-chaining hash table! But I digress...)
You also have some other handy ADT's from previous assignments.
Show that you have everything you need for the graph implementation, at least, by:
(a) Adding a a cout statement containing your name to try_graph.cpp,
(b) compiling it, running it, and running it redirecting its output into try_graph_outl:

try_graph > try_graph_outl

...and submitting try_graph_outl.

2. I want to make sure you are at least a little familiar with the capabilities of this provided graph.h and
graph.template. So, write a small program graph_ex.cpp that simply uses graph.h and graph.template to create the
graph used in the lab exercise, and to print it using graph's print_graph member function.
[Of course, you should precede that print_graph call with a printout saying what you expect to see --- but, you may
use the style used in try_graph.cpp for this. That is, it is sufficient to list the expected vertices and edges; they
needn't be formatted/look exactly the same as print_graph depicts them, nor must each edge be listed twice as
print_graph does. The point is that the reader can tell if the expected graph and actual graph are the same in essence.]
Run:
graph_ex > graph_ex_out
...and submit your resulting graph_ex.cpp and graph_ex_out .

3. IfI wanted you to *implement* bfs and dfs --- I couldn't, yet, with the provided graph. It has no way to mark nodes

as visited.

SO --- we're going to modify it so that it does.

CS 132 - Homework #11 p.-4
Spring 2005

4.

5.

Modify graph.h and graph.template such that you:

* add a separate array of type bool and size MAXIMUM called vertex markings that is initially all false --- it
represents the current markings for all vertices in the graph.

* (note that get vert index(label) returns the index into array vertices for vertex label --- this value should also be
label's index into vertex_markings.)

* add a member function unmark_all which re-marks all vertices as false;

* add a member function mark which takes an Item vert and sets the mark for the vertex vert to true.
* add a member function get mark which takes an Item vert and returns the current marking for vert.
Add appropriate tests of mark, unmark_all, and get mark to try_graph.cpp. Run:

try_graph > try_graph_out2

...and submit versions of your modified graph.h, graph.template, try_graph.cpp, and try_graph_out2

Implement the pseudocode for dfs given in the lab exercise. [HOWEVER, you do not have to implement the
professorial-sanity clause! You can choose the next adjacent unvisited node in any way that you like.]

In babytest_dfs.cpp, run your dfs function on the graph from homework problem #1 using both calls from the lab
exercise, putting the output into babytest dfs_out and submitting your dfs.template, babytest_dfs.cpp and
babytest_dfs_out.

[ves, babytest_dfs_out should still print out actual and expected results --- here, though, just
summarizing the order that you expect the nodes to be visited before each dfs call will suffice. The "expected" doesn't
have to put 1 node per line with "visited:" as dfs will actually do. ASK ME if you are not sure what I mean by this.]

Implement the pseudocode for bfs given in the lab exercise. [AGAIN, you do not have to implement the professorial-
sanity clause! You can choose the next adjacent unvisited node in any way that you like.]

In babytest_bfs, run your bfs function on the graph from homework problem #1 using both calls from the lab
exercise, putting the output into babytest bfs_out and submitting your bfs.template, babytest bfs.cpp and
babytest bfs out.

[yes, babytest_bfs_out should still print out actual and expected results --- again, though, just
summarizing the order that you expect the nodes to be visited before each bfs call will suffice. The "expected" doesn't
have to put 1 node per line with "visited:" as bfs will actually do. ASK ME if you are not sure what [mean by this.]

And, when you are satisfied with all of the above, submit them using ~st10/132submit on cs-server:

try_graph_outl

graph_ex.cpp, graph_ex_out

graph.h, graph.template, try_graph.cpp, and try_graph_out2
dfs.template, babytest_dfs.cpp, babytest dfs_out
bfs.template, babytest_bfs.cpp, babytest bfs out

