
CS 132 - Spring 2005
last modified: 2-14-05

Initial "UML" for bag class (last modified: 2-14-05)
adapted from Savitch and Main, "Data Structures and Other Objects Using C++"

Class: bag
/* an unordered collection of items of a single type, duplicates permitted */

Member data and related details:
* contains elements of type value_type
* has a size of size_t
* has a capacity, number of elements it can hold, which the class quietly expands as necessary.
* has a constant DEFAULT_CAPACITY, a size_t.

Constructors:
/* postcondition: creates an empty bag instance with an initial capacity of DEFAULT_CAPACITY */
bag();

/* postcondition: creates an empty bag instance with an initial capacity of initial_capacity */
bag(size_t initial_capacity);

Accessors and other constant member functions:
/* postcondition: returns the number of items in the bag. */
size_t get_size() const;

/* postcondition: returns the number of times that target is in the bag. */
size_t get_count(const value_type& target) const;

/* postcondition: returns the current capacity of this bag (text doesn't include --- but should, if it's going to
have reserve() function!) */

size_t get_capacity() const;

Modifiers and other modifying member functions:
/* postcondition: removes all copies of target from the bag; returns number of copies so removed (which

could be zero). */
size_t erase(const value_type& target);

/* postconditions:
* if target was in the bag, then one copy of it has been removed; otherwise, the bag is unchanged.
* returns true if one copy was removed, returns false otherwise. */

bool erase_one(const value_type& target);

/* postconditions: a new copy of entry has been inserted into the bag */
void insert(const value_type& entry);

/* postconditions: if new_capacity < current bag size, bag's capacity is changed to the current bag size
(will not make capacity less than the number of items already in the bag). Otherwise, the bag's current
capacity is changed to new_capacity (even if this reduces its capacity). */

void reserve(size_t new_capacity);


