
CIS 130 - Homework #4 p. 1
Spring 2007

CIS 130 - Intro to Programming - Spring 2007
 Homework Assignment #4 - INDIVIDUAL assignment

Homework #4 DUE: BEGINNING of class, Wednesday, February 28, 2007

Purpose: get practice with functions with side-effects, interactive input, and interactive output. There's
some more if-statement practice in here, too.

How to turn in: use the tool ~st10/130submit on cs-server to turn in the files hw4.py and hw4.txt that
you create below.

CONSIDER:

* You can use + to produce a new string that is the concatenation, or merged result, of two strings;
that is, + allows you to concatenate two strings when it is called with two string operands:

>>> name1 = "Sarah"
>>> name2 = "Stout"
>>> name1 + name2
'SarahStout'

* HOWEVER - + can only be used to concatenate two STRINGS. That is, trying to concatenate
a string and a number (or trying to add a number to a string? 8-)) fails:

>>> name1 + 3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

* Happily, it is easy to convert a number to an equivalent string: str(expr) tries to return a string
equivalent for the expr passed to it.

>>> type(3)
<type 'int'>
>>> type(str(3))
<type 'str'>
>>> str(3)
'3'
>>> str(True)
'True'

* SO:

>>> name1 + str(3)
'Sarah3'

* In a related comment, remember that raw_input always returns what the user types as a string.

What if you'd like to treat that string as, say, a number? (Perhaps the user typed 13, which
raw_input returns as '13'?)

CIS 130 - Homework #4 p. 2
Spring 2007

int(expr) will try to return the integer corresponding to expr (if it can);
float(expr) will try to return the float value corresponding to expr (if it can).

* These are all useful to know in functions that use interactive input and output...

NOW, Consider the following function:

#-----
Contract: get_hypotenuse: number number -> number
Purpose: compute the length of the hypotenuse of a right
triangle whose other two sides are of length <side1>
and <side2>
Examples: get_hypotenuse(3, 4) should be 5.0
get_hypotenuse(3, 7) should be 7.62
#-----

from math import *

def get_hypotenuse(side1, side2):
 return sqrt(pow(side1, 2) + pow(side2, 2))

Now that we have functions with side effects, you should be able to see how we might write a function
that simply runs all of get_hypotenuse's examples:

#-----
Contract: test_get_hypotenuse: void -> void
Purpose: run the examples for function get_hypotenuse, comparing
each call to the expected result of that call, and printing
the result of that comparison.
Examples: test_get_hypotenuse() should cause the following to be
printed to the screen:
#
Testing get_hypotenuse (True means a passed test):
--
True
True
#-----

def test_get_hypotenuse():
 print ""
 print "Testing get_hypotenuse (True means a passed test):"
 print "--"
 print get_hypotenuse(3, 4) == 5.0
 print abs(get_hypotenuse(3, 7) - 7.62) < .001

This may not be a very dynamic function, but if you write it early on, you can use it to quickly test
get_hypotenuse while it is being tested and debugged; and, if you decide later to change or modify
get_hypotenuse, it is very easy to re-run all the examples (as you should do ANY time you modify a
function!)

A more interesting function with side-effects might be an interactive "shell" for get_hypotenuse; it could
interactively ask the user for the appropriate values, then call get_hypotenuse with those values, and

CIS 130 - Homework #4 p. 3
Spring 2007

print out the result. Or,

#-----
Contract: ask_get_hypotenuse: void -> void
Purpose: provide an interactive "shell" for get_hypotenuse;
ask the user for the expected right triangle non-hypotenuse
side lengths, then print to the screen the corresponding
hypotenuse length
#
Example: if someone calls get_hypotenuse and enters 3 and 4 when
prompted, the following should be printed to the screen:
#
The hypotenuse's length is: 5.0
#-----

def ask_get_hypotenuse():
 side_a = raw_input(
 "Enter the length of one non-hypotenuse side of a right triangle: ")

 side_b = raw_input(
 "...and now the length of the other non-hypotenuse side: ")

 # since raw_input returns a string, need to convert these hopefully-numeric
 # values to numbers to be able to call get_hypotenuse with them

 side_a_num = float(side_a)
 side_b_num = float(side_b)

 hyp_length = get_hypotenuse(side_a_num, side_b_num)

 print "The hypotenuse's length is: " + str(hyp_length)

So, getting on to the problems:

Type all of the functions for this assignment in a file hw4.py.

1. NOTE that it is considered POOR STYLE for a "pure" function such as those we have been writing
before this week to do interactive i/o; these functions are expected to quietly take their arguments,
compute a result, and return it to the caller. They can be easily called from other programs without
messing up those programs' user interfaces, causing unexpected output to the screen, etc.

But, some functions are written for such side-effects; their whole point is to have an effect, not
necessarily return a value.

Write a function show_sig that takes no parameters, and returns no result; it simply prints to the
screen at least three lines that include your name and whatever else you'd like to include. (For
example, how might you "sign" an e-mail message? You might include your name, that you are a
student at Humboldt State University, and perhaps a message of the day.)

I'll leave it up to your what your "sig" should include, as long as it meets the following minimum
requirements:

CIS 130 - Homework #4 p. 4
Spring 2007

* it should include your name;
* you should print something non-blank on at least three different lines;
* you should try to make it attractive.

In hw4.txt, paste in part of a python session in which you run show_sig, showing the call and what
it prints to the screen.

2. Consider the function semester_grade from HW #2, question #4. (Note that a version of it is also
available from the course Moodle site.)

Copy semester_grade's function definition into hw4.py, and add examples until you have at least
three examples. Then design and write a canned-examples test function test_semester_grade in the
same style as test_get_hypotenuse, that runs each of those example calls, compares its result to the
expected result, and prints True or False based on if the actual result is close enough to the
expected result.

Be sure to include a "Testing..." string printed to the screen, saying what function is being tested
and explaining that each True seen means a passed test.

In hw4.txt, paste in part of a python session in which you run test_semester_grade, showing the
call and what it prints to the screen.

3. Let's say you would now like a nice interactive shell for semester_grade. Design and write
ask_semester_grade, in the same style as ask_get_hypotenuse, that will expect no arguments and
will return no result, but that will ask the user to input the three desired averages (be specific in
your prompts! The different averages have different weights in the semester grade, remember.)

Then it should do what it has to to call get_hypotenuse with the values the user has typed in, and
then print to the screen a descriptive message saying what the hypotenuse of this triangle is.

In hw4.txt, paste in part of a python session in which you run ask_semester_grade, showing the
call and the whole dialogue - what it prints to the screen, what you then enter, and what it finally
prints to the screen.

4. Note that lect03.py (on the in-class examples portion of the public course web page) includes
functions for square_area, rect_area, circle_area, and ring_area.

Create a copy of lect03.py in your current working directory, and then you will be able to import
its functions into hw4.py. Do so, and then:

Create a function which_area which asks the user to type 1 if they want a square area, 2 if they
want a rectangle area, 3 if they want a circle area, and 4 if they want a ring area.

If the user types 1, the program should ask for the side length, and then call square_area to
compute such a square's area, and then print the result to the screen in a descriptive message. If the
user types 2, the program asks for the two rectangle sides, and then calls rect_area to compute such

CIS 130 - Homework #4 p. 5
Spring 2007

a rectangle's area, and then prints the result to the screen in a descriptive message. And so on, for 3
and 4 as well.

What if the user types something BESIDES 1 through 4? The program should simply complain to
the screen, in that case, saying that an illegal answer was given.

Examples section tip: I'll be satisfied if, for each example, you describe specifically some explicit
values the user would type in, and then show what which_area should print to the screen for that
case. (That is, you don't have to reproduce the actual prompt text in each example, just a description
of what values the user inputs in that scenario and the final result each example scenario would
print to the screen - like you see in ask_get_hypotenuse at the beginning of this handout. PLEASE
ASK me if this is not clear!)

You do not have to submit in lect03.py, note.

In hw4.txt, paste in part of a python session in which you run which_area for each of its examples
(how many at the very least?), showing for each the calls and the whole dialogue - what it prints to
the screen, what you then enter, and what it finally prints to the screen.

5. (This is if-statement practice, and hopefully practice making use of the new modified design
recipe.)

(Adapted from www.htdp.org) A manufacturing company measured the productivity of its workers
and found that between the hours of 6 am and 10 am --- that is, from 6-7, 7-8, 8-9, and 9-10 ---
they could produce 30 pieces/hour/worker;

between 10 am and 2 pm --- from 10-11, 11-12, 12-1, and 1-2 --- they could produce 40
pieces/hour/worker;

and between 2 pm and 6 pm --- from 2-3, 3-4, 4-5, and 5-6 --- they could produce 35
pieces/hour/worker.

At all other hours, 0 pieces are produced per hour per worker --- the company is closed then.

Write a function pieces_produced that takes as its arguments an hour of the day expressed in
twenty-four hour format, along with the number of workers working during that hour; it computes
and returns the total number of pieces produced by that many workers during that hour of the day.
(A first argument of 15, then, is asking how much the given number of workers produces working
from 15:00-16:00, or from 3-4 pm.)

You will be writing testing functions for this function next...

6. Now design and write a canned-examples test function test_pieces_produced in the same style as
test_get_hypotenuse, that runs each of pieces_produced's example calls, compares its result to the
expected result, and prints True or False based on if the actual result is close enough to the
expected result.

CIS 130 - Homework #4 p. 6
Spring 2007

Be sure to include a "Testing..." string printed to the screen, saying what function is being tested
and explaining that each True seen means a passed test.

In hw4.txt, paste in part of a python session in which you run test_pieces_produced, showing the
call and what it prints to the screen.

7. And it is easy to imagine someone wanting to play around with this function, perhaps. So, to make
such play a little easier, let's create an interactive shell for pieces_produced. Design and write
ask_pieces_produced, in the same style as ask_get_hypotenuse, that will expect no arguments
and will return no result, but that will ask the user to input the values required, and then call
pieces_produced appropriately, then printing to the screen a descriptive message indicating how
many pieces would be produced.

In hw4.txt, paste in part of a python session in which you run ask_pieces_produced, showing the
call and the whole dialogue - what it prints to the screen, what you then enter, and what it finally
prints to the screen.

When you are happy with your files hw4.py and hw4.txt, type the following command at the cs-server
prompt:

~st10/130submit

Then follow its directions to submit your files .

