
CIS 130 - Homework #5 p. 1
Spring 2007

CIS 130 - Intro to Programming - Spring 2007
 Homework Assignment #5 - INDIVIDUAL assignment

Homework #5 DUE: BEGINNING of class, Wednesday, March 7, 2007

Purpose: get practice with count-controlled loops

How to turn in: use the tool ~st10/130submit on cs-server to turn in the files hw5.py and hw5.txt that you
create below.

CONSIDER:
* Did you ever want to print something WITHOUT printing a newline at the end?

Here's an interesting-but-odd aspect of Python's print command: if you END a print command with a
COMMA, it DOESN'T print a new line --- although it WILL print an extra blank!!

(Confession time: Python's print command adds an extra blank EVERY TIME you separate stuff with a
comma!)

CONSIDER the following --- and PLAY WITH IT in the python interpreter until you believe it:

in file play.py

def playing():
 print "A" + "B" + "C"
 print "D", "E", "F"
 print "H" + "I" + "J",
 print "K", "L", "M",
 print "So long",
 print "Farewell!"

>>> from play import *
>>> playing()
ABC
D E F
HIJ K L M So long Farewell!
>>>

Create a file hw5.py, and create the functions described below. Paste evidence of testing them into hw5.txt.

1. SO: consider the above. You could use this in a simple count-controlled loop in a function line_of_X, that
expects an integer as an argument and prints a line of THAT number of X's to the screen, where each X is
followed by a blank (conveniently enough...!).

I'll even be nice and give you your Examples section:

Examples: line_of_X(5) should cause this to be printed to
the screen:
X X X X X
line_of_X(8) should cause this to be printed to
the screen:
X X X X X X X X

CIS 130 - Homework #5 p. 2
Spring 2007

PLEASE NOTE: Yes, Python has a feature that would allow this to be done without writing a loop. As the
whole point of this problem is to practice writing a simple count-controlled loop, you MUST use an
appropriate while-loop in a count-controlled fashion in your solution to receive full credit for your function.

2. Now, we'll be discussing writing nested loops - loops within other loops. But, many times, the easier way in
these situations is to use auxiliary functions instead...! 8-)

If you wanted to print something such as:

X X X
X X X
X X X
X X X

...then couldn't you do this by calling line_of_X(3) four times?

And if you wanted to print something such as:

X X X X X X X X
X X X X X X X X
X X X X X X X X

...then couldn't you do this by calling line_of_X(8) three times?

Well, then - write a function box_of_X that expects two integers as arguments, the number of rows in the
desired "box" and the number of X's per row, and it prints a "box" of X's made up of that many rows and X's
per row (again, conveniently with a blank after each X).

That is, box_of_X(4, 3) should cause the following to be printed to the screen:

X X X
X X X
X X X
X X X

...and box_of_X(3, 8) should cause the following to be printed to the screen:

X X X X X X X X
X X X X X X X X
X X X X X X X X

Oh, and your solution MUST use an appropriate while-loop in a count-controlled fashion and MUST call
line_of_X appropriately to receive full credit.

3. But - you could do more than *that* with line_of_X. You could make a triangle, too:

X
X X
X X X
X X X X
X X X X X

CIS 130 - Homework #5 p. 3
Spring 2007

For this simple count-controlled loop practice, write function triangle that expects a single integer as
argument, and it prints a triangle with that many rows, with 1 X in the first row, X X in the 2nd row, X X X
in the third row, ... until you reach the desired number of rows.

And, again, your solution MUST use an appropriate while-loop in a count-controlled fashion and MUST call
line_of_X appropriately to receive full credit.

4. Someone in class commented a few weeks ago that the quiz_average --- the one that averaged five quiz
grades - would be more useful if it could handle different numbers of grades.

We'll be able to pass such a set of grades as a single argument a little later -- but for now, we COULD use a
count-controlled loop and interactive input.

Write average_grades, which takes one argument, the number of grades to be averaged, and interactively
asks for that many grades. It totals/sums these grades as they are entered, and then computes and returns the
average of those grades (being sure that a floating-point average is possible even if integer grades are
entered).

You should, of course, use a count-controlled while loop in your answer.

5. Sometimes loops look to see if certain things are true along the way.

What if you wanted to know how many A-level grades there were in a collection of grades? (How many
grades >= 90?)

You could read each in, and as you do so see if the latest grade entered meets the criterion for a grade of A.
IF it is, you could increment an a_grade_count, or some specialized counter.

When the loop is done, you could say how many A grades had been entered by printing the value of that
counter to the screen. You could even compute the percentage of grades that did so --- if 5 of 10 entered were
A-level, you could say that ((1.0 * 5) / 10) * 100 = 50% of grades were A's.

Write a function count_As that takes one argument, the number of grades to be examined, and interactively
asks for that many grades, counting the number of A-grades entered, and when done printing to the screen
the number of A-level grades entered and the overall percentage of grades that were A's.

When you are happy with your files hw5.py and hw5.txt, type the following command at the cs-server prompt:

~st10/130submit

Then follow its directions to submit your files.

