
CIS 130 - Homework #6 p. 1
Spring 2007

CIS 130 - Intro to Programming - Spring 2007
 Homework Assignment #6 - INDIVIDUAL assignment

Homework #6 DUE: BEGINNING of class, Wednesday, April 4, 2007

Purpose: get practice with sentinel-controlled loops, file input/output, and lists/arrays

Create a file hw6.py, and create the functions described below. Paste evidence of testing them into hw6.txt.

1. Consider the function pig_latinize provided along with this handout; note that it uses some Python features
we haven't discussed, but then you only have to call it, not write it... 8-) . You should copy pig_latinize.py
into the directory where you put hw6.py.

Here is pig_latinize's opening comment block, which should be enough for you to be able to call and use it
fruitfully:

#-----
Contract: pig_latinize: string -> string
Purpose: return a somewhat-pig-latin form of <a_word>
Examples: pig_latinize("apple") == "apple-ay"
pig_latinize("pie") == "ie-pay"
#----

Write a function sent_pig that prompts the user to interactively enter words that are to be pig-latinized until a
string of quit is entered; after each word is entered, its pig-latin form should be printed to the screen.

To receive full credit, you must:
* use a properly-structured "classic" sentinel-controlled loop in your function
* call pig_latinize appropriately in your function

2. But, why should the poor word 'quit' not be able to be pig-latinized?

Now write function sent_pig2, a variation that uses answer_y_or_n (you can find it along with the Not-
Really-a-Week-8-Lab-Exercise solution on the course Moodle site, under "Some Solutions") so that the user
is asked if he/she wants to enter a word to be pig-latinized before being prompted for that word; he/she
should only be prompted for a word if he/she answers 'y' to that question. sent_pig2 then ends when he/she
answers 'n' to that question.

To receive full-credit, you must:
* use a somewhat-classic-sentinel structure in your function
* call answer_y_or_n and pig_latinize appropriately in your function

Rhetorical questions JUST to think about (and I'm not sure the answers are clear-cut!): which of sent_pig
and sent_pig2 would you rather use? When and why might you prefer the style of sent_pig (the "classic"
sentinel-controlled loop)? When and why might you prefer the style of sent_pig2? I am asking this to point
out that such decisions are part of the user interface design of functions...

3. Then again, what if your user already has a text file of words he/she wants to pig-latinize, and he/she doesn't
really want to type them in by hand?

First, a useful file-input tidbit: what if you don't want a newline on a string you have read in from a file?
(Remember, readline() includes a newline at the end, much of the time.) In fact, what if you want ANY

CIS 130 - Homework #6 p. 2
Spring 2007

leading or trailing white space (including newline characters) to be chopped off a string?
* To get a version of a string with such white space removed, call the string's strip method; here's an

example:

>>> orig_string = " hello \n"
 >>> new_string = orig_string.strip()

>>> print "<" + orig_string + ">"
< hello
>
>>> print "<" + new_string + ">"
<hello>

Keeping the string strip() method in mind...(and being CAREFUL about when you call it...)

...write a function file_pig that expects a file name as its parameter; it is allowed to simply assume that this
file exists in its current working directory and is open-able and read-able, and that it contains one word per
line. It should open this file and read its contents, trying to pig-latinize each word in that file, and printing
the pig-latinized version to the screen.

(Note: your function does not create the input file; it just uses it. When you want to test file_pig, you will
want to create an example input file with pico or the text editor of your choice.)

4. What if you'd like interactive input, BUT you don't want the pig-latinized words to be printed in-between the
prompts, but instead all in one "block" of lines at the end?

(That is, you don't want something like:
>>> Enter next word: apple
apple-ay
>>> Enter next word: core
ore-cay
>>> Enter next word: ...

...but instead you want something like:
>>> Enter next word: apple
>>> Enter next word: core
>>> Enter next word: ...
apple-ay
ore-cay
...
)

Do you see that you could store the words entered into a list/array, and then when all are entered "walk
through" that list/array's contents, calling pig_latinize for each?

Write function list_pig, which expects as its one parameter the number of words to be entered. It should
request that many words, appending each to an list/array; it should then loop through the contents of the
resulting list/array, printing to the screen the result of calling pig_latinize for each, one result per line (so
that the results are indeed printing all in a block at the end, not interleaved with the word-prompts).

5. Now that we have lists/arrays, it is occasionally useful to have functions that return lists/arrays.

Consider - what if something like file_pig created and returned a list of the pig-latinized words, instead of

CIS 130 - Homework #6 p. 3
Spring 2007

printing them to the screen? Then you'd have a function that might be a handy auxiliary function for use in
other functions.

So, write function file_pig2 that expects a file name as its parameter, and it too is allowed to simply assume
that this file exists in its current working directory, is open-able and read-able, and contains one word per
line. It still opens this file, reads its contents, and pig-latinizes each word in that file, BUT instead of
printing the result to the screen, it appends it to a list, and then returns the resulting list.

So, if a file word_list.txt contains:
apple
core
pie
betty
cobbler
turnover

...then file_pig2("word_list.txt") == ['apple-ay', 'ore-cay', 'ie-pay', 'etty-bay',
'obbler-cay', 'urnover-tay']

6. And, we need some file output now.

Consider: Python provides some list-goodies that C++ doesn't for arrays, as we have discussed; another
example of this is Python's sort method for lists:

>>> list1 = ["zed", "gamma", "beta", "alpha"]
>>> list1.sort()
>>> list1
["alpha", "beta", "gamma", "zed"]

Now, this doesn't always work as well as the above implies -- you can see what I mean if you try to sort a
list containing strings and numbers, or containing strings where some begin with uppercase letters and some
begin with lowercase letters. (And there *are* Python ways around this issue, but they're outside of scope of
CIS 130... 8-)) But, in the meantime, this is still a handy method.

Write a function sorted_pig that expects two parameters, the name of an input file expected to contain one
word per line, and the name of the desired output file to be created. (Your function may assume that the
input file is in the current working directory, is open-able and read-able, and contains one word per line; and,
it may assume that it is OK to delete any pre-existing contents in the desired output file, if the output file
exists when sorted_pig is called.)

Your function should use file_pig2 to create a pig-latinized list of the words from the input file; it should
sort the list and print the sorted result to the output file, one word per line.

When you are happy with your files hw6.py and hw6.txt, type the following command at the cs-server prompt:

~st10/130submit

Then follow its directions to submit your files.

