
CIS 130 - Homework #7 p. 1
Spring 2007

CIS 130 - Intro to Programming - Spring 2007
 Homework Assignment #7 - INDIVIDUAL assignment

Homework #7 DUE: BEGINNING of class, Wednesday, April 11, 2007

Purpose: get practice with simple C++ functions

Note that use of the design recipe is still required for all functions, including C++ functions! But:
* use C++ types in contracts for C++ functions, and
* use == for examples for non-void C++ functions

(and, if necessary, note that the C++ cmath library, included by the funct_play2 and expr_play tools
by default, includes an abs (absolute value) function, like Python's, along with other goodies)

For now I will have to just trust that you test these functions thoroughly – at this stage we don't have a convenient
way to generate a proof-of-testing file for submission.

ALSO: if you want a shortcut for submitting the required homework files, then name them PRECISELY using
the function names given here, and see the note at the end of this handout.

1. Remember fahr_to_cels from HW #1? Write a C++ version of fahr_to_cels that takes a single Fahrenheit
temperature as its parameter, and returns the equivalent Celsius temperature. No named constants are
required for this one, but be sure to test it *carefully*.

2. Remember dollar_to_euro from HW #1? Write a C++ version of dollar_to_euro that takes a number of
U.S. Dollars as its parameter, and returns the equivalent quantity in Euros. Appropriate use of named
constants is required for this one.

3. Remember tank_volume from HW #2? Write a C++ version of tank_volume that takes a tank's length,
height, and width as its parameters, and returns the volume of that tank.

4. Remember semester_grade from HW #2? Write a C++ version of semester_grade that takes a homework
average, a quiz average, and a final exam score as its parameters, and returns a semester grade based on the
following weighting: 50% from the homework average, 30% from the quiz average, and 20% from the final
exam score. Appropriate use of named constants is required.

5. Remember worked_overtime from HW #3? Write a C++ version of worked_overtime that takes a number
of hours worked as its parameter, and returns bool true if that number of hours worked is strictly greater than
40, and returns bool false otherwise. Appropriate use of bool and named contants is required; do not use an
if in your solution.

6. Write a C++ function gross_total that takes a quantity of an item and the cost per item as its parameters, and
returns the cost for that many of that item. For this one, your solution should be written so that no fractional
item quantities are permitted, but the cost can be fractional.

7. Now write a C++ function tax_owed that takes an amount and a tax rate as its parameters, and returns the
tax owed for that amount based on that tax rate.

8. And, now write C++ function final_total that takes a quantity of an item and a cost per item as its
parameters, and returns the total, plus 7.25% tax, for that many of that item. final_total must appropriately
call gross_total and tax_owed, and appropriate use of named constants is required.

CIS 130 - Homework #7 p. 2
Spring 2007

When you are happy with these functions, you can either submit the .cpp and .h files for each, OR you can use
the following quickie-tool to build a file containing all of them (called a tar file – short for tape archive...!)
and submit that one file instead (IF you have named your functions PRECISELY as given above...):

...if you are interested in the quickie tool, then type the following at the cs-server prompt:
~st10/get_hw07

...give the name of a directory you want built, and when done, if all 16 files are listed on-screen as being in
your new file, then you can submit the file whose name it tells you at the end.

(Note: you STILL use ~st10/130submit to submit this homework! But it is your choice if you submit the 16
.cpp and .h files in the usual way, OR use ~st10/get_hw07 and submit the single file it builds containing
(hopefully) your 16 .cpp and .h files.)

