
CIS 130 - Homework #9 p. 1
Spring 2007

CIS 130 - Intro to Programming - Spring 2007
 Homework Assignment #9 - INDIVIDUAL assignment

Homework #9 DUE: BEGINNING of class, Wednesday, April 25, 2007

Purpose: get practice with complete C++ programs

Note that use of the design recipe is still required for all functions, including C++ functions! But, use C++ types
in contracts for C++ functions, and use == for examples for non-void C++ functions. (describe output for a
specific example for void C++ functions)

1. Remember line_of_X from HW #5? Write a C++ version of function line_of_X that takes the number of
X's desired as its parameter, and prints to the screen that many X's, followed by a newline character. It
should not return *anything*.

For example, line_of_X(7); would cause the following to be printed to the screen:
XXXXXXX

Create files line_of_X.cpp and line_of_X.h.
BUT: you cannot test this in ~st10/expr_play or ~st10/funct_play2 (I don't *think*), because it doesn't return
anything. You need a main function for that. SO – proceed to #2.

2. Write a main function whose purpose is to test line_of_X --- it should be in a file named test_line.cpp, and
should call the function line_of_X in line_of_X.cpp/line_of_X.h.

It should call line_of_X at least 3 times. When all is working fine, line_of_X.cpp, line_of_X.h, and
test_line.cpp will be ready for submission.

3. Remember box_of_X from HW #5? Write a C++ version of function box_of_X that takes two parameters,
the number of rows in the desired box and the number of X's per row, and prints a "box" of X' s to the screen
with that many rows and that many X's per row, ending up with a newline character. It should not return
anything, and it must appropriately call line_of_X.

For example, box_of_X(3, 5); would cause the following to be printed to the screen:
XXXXX
XXXXX
XXXXX

Create files box_of_X.cpp and box_of_X.h.
BUT: you also cannot test this in ~st10/expr_play or ~st10/funct_play2 (I don't *think*), because it doesn't
return anything. You need a main function for that. SO – proceed to #4.

4. Write a main function whose purpose is to test box_of_X --- it should be in a file named test_box.cpp, and
should call the function box_of_X in box_of_X.h/box_of_X.cpp .

This testing main should ask the user to type in the desired number of rows and X's per row, and then call
box_of_X accordingly. (Be careful – be sure to include the files for ALL of the functions involved when
creating the executable test_box.) When all is working fine, box_of_X.h, box_of_X.cpp, and test_box.cpp
will b e ready for submission.

5. Remember triangle from HW #5? Write a C++ version of function triangle that takes one parameter, the

CIS 130 - Homework #9 p. 2
Spring 2007

number of rows in the desired triangle, and prints a "triangle" of X's to the screen that is that many rows tall,
with one X in the first row, two X's in the second row, and so on, ending up with a newline character. It
should not return *anything*, and it must appropriately call line_of_X.

For example, triangle(5); would cause the following to be printed to the screen:
X
XX
XXX
XXXX
XXXXX

Create files triangle.cpp and triangle.h.
BUT: you also cannot test this in ~st10/expr_play or ~st10/funct_play2 (I don't *think*), because it doesn't
return anything. You need a main function for that. SO – proceed to #6.

6. Write a main function whose purpose is to test triangle --- it should be in a file named test_tri.cpp, and
should call the function triangle in triangle.h/triangle.cpp.

This testing main should continue to ask the user for triangle number of rows, each time then displaying a
triangle of that many rows with the help of the triangle function, until the user enters a 0 or negative number
of rows. (For full credit, you are expected to use the "classic" loop structure for this kind of loop.) (Be
careful – be sure to include the files for ALL of the functions involved when creating the executable
test_tri.) When all is working fine, triangle.h, triangle.cpp, and test_tri.cpp will be ready for submission.

7. Remember the C++ function semester_grade.cpp/semester_grade.h from HW #7? (It is available at the
public course Moodle site, if yours isn't handy or quite correct.)

Write a main function whose purpose is to call semester_grade appropriately for some number of students.
It should be in a file named class_grades.cpp and should call the function semester_grade in
semester_grade.h/semester_grade.cpp.

This main will ask the user how many students there are, and then ask for the homework, quiz, and final
score for that many students, each time then using semester_grade to determine and then print to the screen
the semester grade for that student.

Be careful – semester_grade is a "pure" function, and returns its result. How should it be called here? When
all is working well, class_grades.cpp will be ready for submission.

When you are happy with these functions, you can either submit the .cpp and .h files mentioned above, OR you
can use the following quickie-tool to build a file containing all of them (a tar file) and submit that one file instead
(IF you have named your functions PRECISELY as given above...):

...if you are interesting in the quickie tool, then type the following at the cs-server prompt:
~st10/get_hw09

...give the name of a directory you want built, and when done, if all 10 files are listed on-screen as being in your
new file, then you can submit the file whose name it tells you at the end.

(Note: you STILL use ~st10/130submit to submit this homework! But it is your choice if you submit the 10 .cpp
and .h files in the usual way, OR use ~st10/get_hw09 and submit the single file it builds containing (hopefully)
your 10 .cpp and .h files.)

