
CIS 130 - Intro to Programming p. 1
NOT REALLY A Week 8 Lab Exercise - 03-07-07

CIS 130 - Intro to Programming

NOT REALLY A Week 8 Lab Exercise

Purpose: get more practice with sentinel-controlled loops

Answer the following in the space provided:

1. Consider asking_profits.py (available along with this handout). It uses a sentinel-controlled loop to
ask a user for a ticket price, and then prints to the screen the profit for that ticket price; it continues
until the user enters a ticket price of -1 (that's the sentinel value, in this case).

Read this over carefully, and make sure that you understand what it is doing and how it is doing it.

Then, copy it into a file in your current working directory with the name asking_profits.py. If you
need to, also copy over profit_ex.py (which contains the profit/revenue/cost/attendance combo).

(a) Run asking_profits in the python interpreter, and immediately enter a ticket price of -1. What
gets printed to the screen as a result?

(b) Run asking_profits again, and type at least three "real" ticket prices before typing in a ticket
price of -1 to stop. Below, write the ticket price you tried, and the profit it printed. out for it:

ticket price: ______________ profit: ________________

ticket price: ______________ profit: ________________

ticket price: ______________ profit: ________________

Now enter a ticket price of -1 to end the program. Does the program try to print the profit from
a ticket price of -1?

2. A little food for thought: in programming, there is almost always more than one way to solve a
problem. Some of these may be equally reasonable - others may work, but in a less-elegant or
otherwise less-desirable way.

Consider the following two functions. As you can see, sum_all1 uses a classically-structured
sentinel-controlled loop:

def sum_all1():

 SENTINEL = -1
 input = 0

CIS 130 - Intro to Programming p. 2
NOT REALLY A Week 8 Lab Exercise - 03-07-07

 sum = 0

 input = int(raw_input("enter the first input, or " + str(SENTINEL)
 " to stop: "))

 while (input != SENTINEL):

 sum = sum + input

 input = int(raw_input("enter the next input, or " + str(SENTINEL)
 " to stop: "))

 print "sum is: " + str(sum)

now consider sum_all2, which uses an alternative approach:

def sum_all2():
 SENTINEL = -1
 input = 0
 sum = 0

 while (input != SENTINEL):

 input = int(raw_input("enter the next input, or " + str(SENTINEL)
 " to stop: "))

 if (input != SENTINEL):
 sum = sum + input

 print "sum is: " + str(sum)

Say that someone wants to use these to add up 50 inputs.

For sum_all1, how many values are typed in by the user? ____________________

For sum_all2, how many values are typed in by the user? _____________________

For sum_all1, how many times will you compare input to SENTINEL while handling these input
values?

For sum_all2, how many times will you compare input to SENTINEL while handling these input
values?

Both work - but sum_all2 requires about two times the number of comparisons that sum_all1 does.
This just feels more redundant, as well as more "clunky", than it needs to be, when the classic
sentinel structure makes half of those comparisons unnecessary.

CIS 130 - Intro to Programming p. 3
NOT REALLY A Week 8 Lab Exercise - 03-07-07

3. A little Boolean-play, in preparation for some of HW #6:

Consider the following truth table:

A B (A and B) (A or B)

False False False False
False True False True
True False False True
True True True True

What is the opposite of (A and B)? You know that it is not(A and B):

A B (A and B) not(A and B)
--
False False False True
False True False True
True False False True
True True True False

If two expressions have the same set of values in their truth table columns, then they are equivalent
expressions.

So: complete the following truth table (and feel free to use the python interpreter to check your
entries). See which Boolean expression is equivalent to not(A and B):

A B not A not B (not A) and (not B) (not A) or (not B)
--

False False _______ ________ ________________ _______________

False True _______ ________ ________________ _______________

True False _______ ________ ________________ _______________

True True _______ ________ ________________ _______________

Which expression above is equivalent to not(A and B)? ________________________________

Likewise, consider not(A or B):

A B (A or B) not(A or B)

False False False True
False True True False
True False True False

CIS 130 - Intro to Programming p. 4
NOT REALLY A Week 8 Lab Exercise - 03-07-07

True True True False

Look back up at the truth table you completed above. Which expression turns out to be equivalent
to not(A or B)?

Above, you have actually proven deMorgan's Laws. And if you keep this in mind, it can be useful
in writing the precise conditions you want for if-statements and while-loops.

How so? Well, someone asked in class the other day if you could write code that would give users
another chance if they entered a value known to be unreasonable - for example, if you ask them to
enter y or n (for yes or no), and they enter something else.

But - what if the user answered something else again? a third time? a fourth? You need repetition,
to ensure that you keep trying until something "legal" is entered. You could do that with a kind of
sentinel-controlled loop, true? You could keep looping while the user has entered something that
ISN'T y or n...

Write a Boolean condition would be true if a variable value_entered is 'y' or 'n':

Considering what you've learned above, you should now be able to determine one of the several
expressions that will then correctly be true if a variable value_entered is NOT 'y' or 'n':

__

3. So, now write answer_y_or_n, a function which expects a string as a parameter, the (presumably
yes-no) question to be asked, which keeps asking that question and reading in what the user types as
a result until he/she types a legal 'y' or 'n'; it then returns that 'legal' response as its value.

Since this is not actually a lab exercise, I've posted a copy of this with answers included on the course
Moodle site, under "Some solutions." I would recommend filling this out yourself, and then comparing
your answers with those posted.

And - if you have any questions about those answers - then please be sure to ASK ME about them.

