
CIS 130 - Intro to Programming p. 1
Week 11 Lab Exercise - 04-04-07

CIS 130 - Intro to Programming
Week 11 Lab - Wednesday, 04-04-07

Week 11 Lab Exercise

Purpose: get some practice with simple functions in C++ (and the ~st10/funct_play2 and ~st10/expr_play tools)

YOU MAY WORK IN PAIRS FOR THIS LAB. Make sure you understand all the concepts!

NAME(S) ___

1. Goal #1: see how you can use the ~st10/funct_play2 and ~st10/expr_play tools on cs-server to write and
test simple functions written in C++.

As was demonstrated in C++, if you type the command ~st10/funct_play2 at the cs-server prompt, it walks
you through the steps of the usual design recipe, except that you are expected to type your code using C++
syntax instead of Python syntax.

As a reminder, consider the following versions of circ_area, one in Python and one in C++:

contract: circ_area: number -> number
purpose: compute and return the area for a circle whose radius is <radius>
examples: circ_area(10) == 314.159
circ_area(5) == 78.53975

PI = 3.14159

def circ_area(radius):
 return PI * (radius * radius)

/*-----
 contract: circ_area: double -> double
 purpose: compute and return the area of a circle whose radius is <radius>
 examples: circ_area(10) == 314.159
 circ_area(5) == 78.53975
-----*/

const double PI = 3.14159;

double circ_area(double radius)
{
 return PI * (radius * radius);
}

Try typing in and testing the C++ version of circ_area using ~st10/funct_play2

2. You don't have to re-type a function if you need to debug it or otherwise modify it. If you now type the
following at the cs-server command line, you'll see that you have three circ_area files:

ls circ_area* # show names of files that begin with circ_area

circ_area.cpp
circ_area.h
circ_area.o

CIS 130 - Intro to Programming p. 2
Week 11 Lab Exercise - 04-04-07

...you can simply use pico circ_area.cpp or pico circ_area.h and make whatever changes you'd like. If you
call ~st10/funct_play2 again, and answer the “new function” questions so that you say the file already
exists, you can edit it further as desired and re-compile the changed function.

(You can also re-compile your function at the cs-server prompt, IF you prefer, by typing:

g++ -c circ_area.cpp

...and then you can just use ~st10/expr_play to run the changed function, if you prefer that to
~st10/funct_play2)

Using the method of your choice, CHANGE the precision of PI for circ_area. (Which file is that declaration
in, circ_area.cpp or circ_area.h?) Re-run circ_area and verify that you see the new precision. When it is
your turn, I will ask you to run your circ_area .

3. What if you are writing a function that USES another function? Then, in the ~st10/funct_play2 tool, you
specify what functions the new function uses before writing the new function --- the tool then inserts the
needed code to make this possible (which we'll discuss a bit later).

To see this, write a C++ version of ring_area that uses the C++ version of circ_area you have developed
and modified. (Remember? The area of a ring is the area of the outer circle minus the area of the ring's
“hole”... 8-))

Use either ~st10/expr_play or ~st10/funct_play2 to test ring_area, but BEWARE of the following
QUIRK: expr_play needs you to list ALL the functions involved with a function, to be able to run it (for
reasons we will discuss later on). So, you need to enter the names of both circ_area and ring_area to be
able to test ring_area.

When it is your turn, I will ask you to run your ring_area.

NOW write your name(s) on the NEXT: list on the board. (You write your name on this list if you have
questions along the way, as well as when you are done; I'll then work my way down the list.) You need to
complete the above and have it checked by the end of lab.

