
CIS 130 - Homework #1 p. 1
Spring 2010

CIS 130 - Intro to Programming - Spring 2010
Homework #1

DUE: Wednesday, February 3rd, 5:00 pm

Each student should work individually on this assignment

When you are done with the following problems:
• save your resulting Definitions window contents in a file with the suffix .ss or .scm

• transfer/save that file to a directory on nrs-labs

• use ssh to connect to nrs-labs

• cd to the directory where you saved it (cd 130hw1 for example)

• use ~st10/130submit to submit it

• make sure that ~st10/130submit shows that it submitted your homework .ss or .scm file

• (we will be practicing the above in class on Monday, February 1st -- ASK ME if this is
not clear after that, or if you have any problems with submission!)

0. Start up DrScheme, setting the language to Beginning Student and adding in the
universe.ss and fabric-teachpack.scm teachpacks. (You saw how to do this during the class
on Monday of Week 2 -- that class's posted example includes some notes to remind you how
to do it, if you'd like a refresher.)

In the definitions window (the top one) type in a comment-line containing your name,
followed by a comment-line containing CIS 130 - HW 1, followed by a comment-line with
no other text in it --- that is,

; type in YOUR name
; CIS 130 - HW 1
;

1. Below what you typed in #0 above, type the comment lines:

; Problem 1
;

Now type the expressions specified below in the Scheme definitions window, each starting
on its own line. Run (push the Run button) and look in the interactions window (in the lower
window) to see if you get the expected results for each.

(a) a simple expression of type number representing the number 47
(b) a compound expression of type number representing the sum of 13 and 47
(c) a simple expression of type string that includes your name
(d) a simple expression of type string that represents a color of your choice
(e) a compound expression of type image that is a rectangle or a fabric image (your

choice!) of the color of your expression from (d), of width 75 pixels and height 45
pixels

2. Next, in your definitions window, type the comment lines:

CIS 130 - Homework #1 p. 2
Spring 2010

; Problem 2
;

There is a special operation called check-expect -- it expects two expressions of any
type, and it tests to see if the second has the same value as the first. What is unusual about
this particular operation, though, is that it doesn't produce a boolean value -- instead, it has
several side-effects. If the values of its expressions are the same for all of the check-
expect expressions in your Definitions window, it simply causes a message saying how
many tests were passed to be displayed in the Interactions window, at the end. But if the
values of the expressions are not the same, a separate window is displayed, giving how the
expressions differed, and with links to each check-expect expression that "failed".

Figure out (by yourself) what you think the value is for each of the following Scheme
expressions.

• Are any using incorrect syntax? If so, type them within a comment in your Definitions
window.

• For each of those using correct syntax, write a check-expect expression including
the expression below and what you think its value should be.

Then push the Run button, and see if your tests -- your check-expect expressions --
pass. If any do not, feel free to tweak them until they do -- but try to figure out why their
values differed from what you expected. The important thing here is to think about what
should happen, and then compare it to what really happens.

(a) (* (- 3 5) 20)
(b) (* pi (* 10 10))
(c) (+ 73 true)
(d) (/ 13 0)
(e) (or (< 1 2) (> 5 8))
(f) (and (< 1 2) (> 5 8))
(g) (< (image-width chili) (image-width hat))

3. Next, in your definitions window, type the comment lines:

; Problem 3
;

Scheme happens to have a built-in operation for finding the maximum of some set of
numbers, called max. Write expressions in your definitions window, each on its own line,
using max to see if it works:
* with 2 values,
* with more than two values,
* with just one value, and
* with no values.

If any of these do not work, COMMENT OUT that expression in your definition window
(put a ; in FRONT of it) and re-run (so the subsequent expressions will get a chance to
execute!).

4. Next, in your definitions window, type the comment lines:

CIS 130 - Homework #1 p. 3
Spring 2010

; Problem 4
;

The following are currently not "proper" Scheme expressions (expressions that follow
Scheme's syntax rules). Correct each, and then type each (now-"legal"-syntax) Scheme
expression in your definitions window (starting on its own line).

(a) (chili)
(b) image-width chili
(c) (* (/ 7 3) (8) (image-height flower))

5. Next, in your definitions window, type the comment lines:

; Problem 5
;

Write a compound expression of type image, using any of the operations we have discussed
thus far.

Now write another compound expression of type image, using any of the operations we have
discussed thus far, except make sure that the width and height of the resulting image are
greater than those for the image resulting from your first expression.

6. Next, in your definitions window, type the comment lines:

; Problem 6
;

You should recall the following operations from Week 2's class:

* ; rectangle: number number string string -> image
; (rectangle width length mode color)
; purpose: expects a numeric width in pixels,
; a numeric length in pixels,
; a string mode (either "solid" or "outline"),
; and a color given as a string,
; and produces a rectangle image (either filled in or not) of that size and color.

* ; circle: number string string -> image
; (circle radius mode color)
; purpose: expects a numeric radius in pixels,
; a string mode (either "solid" or "outline"),
; and a color given as a string,
; and produces a circle image (either filled in or not) of that size and color.

* Note that images have something called a pinhole -- in circles and rectangles this
pinhole is in the center of the image. When you combine such images using the
operation overlay, it overlays them on their pinholes.

(You can move an image's pinhole, too - type pinhole in DrScheme, type the F1 key
while the cursor is anywhere on the word pinhole, and click on any pinhole operation
in the resulting window that says it is from teachpack/htdp/image. You'll then get a page

CIS 130 - Homework #1 p. 4
Spring 2010

of documentation telling you more about pinholes and more pinhole operations.)

* ; overlay: image image ... -> image
; (overlay image1 image2 ...)
; purpose: expects as many images as you'd like,
; and produces a new image that is the result of overlaying image1, image2, and
so
; on on their pinholes.
; (Note: the pinhole of the new image is in the same place as the pinhole of
image1)

Now, here's a new operation:

* ; add-line: image number number number number string -> image
; (add-line image begin-x begin-y end-x end-y color)
; purpose: expects an image, beginning x and y coordinates,
; ending x and y coordinates, and a color (given as a string),
; and produces a new image that is the result of adding a line of color color

 ; starting at (begin-x, end-x) and ending at (end-x, end-y)
; to the top of image.
; (NOTE: (0, 0) is considered to be the current pinhole of image;
; x's higher than 0 are to the RIGHT of this,
; y's higher than 0 are BELOW this.)

Write one or more compound expression(s) so that:
* you use each of the operations:

• rectangle
• circle
• overlay and
• add-line

...at least once,

* ...each time using them together with ONE or more of the operations:
• create-solid-fabric
• add-horiz-stripe
• add-vertical-stripe
• add-print
• image-width or
• image-height

(You can do this with as many as four compound expressions, or with as few as one
compound expression.)

Optional class challenge: (not for a grade, but I reserve the right, if I have time, to display
the best one(s) to the class): See how many of these operations you can successfully use
within a single compound expression.

