
CIS 130 - Homework #2 p. 1
Spring 2010

CIS 130 - Homework #2
Due:
Thursday, February 11th, 11:59 pm

Purpose:
To provide practice giving a name to an inserted image, writing functions using the design
recipe, using named constants, and writing simple programs that call functions.

How to submit:
When you are done with the following problems:

• save your resulting Definitions window contents in a file with the suffix .ss or .scm

• transfer/save that file to a directory on nrs-labs

• use ssh to connect to nrs-labs

• cd to the directory/folder where you saved it (cd 130hw2 for example)

• use ~st10/130submit to submit it

• make sure that ~st10/130submit shows that it submitted your homework .ss or .scm
file

• (ASK ME if this is not clear, or if you have any problems with submission!)

Important notes:
• Each student should work individually on this assignment.

• You are expected to follow the Design Recipe for all functions that you write. So, each
function is expected to include:

• a contract comment, including the name of the function, the types of expressions it
expects, and the type of expression is produces. This should be written as discussed in
class (and you can find examples posted on the public course web page). For example,
; contract: rect-area: number number -> number

• a purpose comment, describing what the function expects and describing what it
produces. For example,
; purpose: expects the length and width of a rectangle,
; and produces the area of that rectangle

• [following the design recipe, you will be writing the function header next; note that
you don't need to write it twice. Follow the function header with a body of ... at this
stage, and replace that ... with its body later, at the appropriate step in the design
recipe.]

• check-expect expressions expressing the specific examples you devise before writing
your function body. (These may be placed before or after your actual function, but you
are expected to create these before writing the function body. I'll have no way of

CIS 130 - Homework #2 p. 2
Spring 2010

knowing if you really write these in the correct order, but note that I won't answer
questions about your function body without seeing your examples written as check-
expect expressions first...) For example,
(check-expect (rect-area 3 4)
 12)

• How many check-expect expressions should you have? That is an excellent
question, and a major topic.

• For this homework, I'll say how many you need, but we'll be discussing how
you determine how many you need, and later you'll be graded based on whether
you include a reasonable number and kind of check-expect expressions.

• The basic rule of thumb is that you need an example/check-expect for each
"case" or category of data that may occur... and you can always add more if
you'd like!

• [and, of course, your function definition itself!]

• You may include as many additional calls or tests of your function as you would like
after its definition.

• Because the Design Recipe is so important, you will receive significant credit for the
contract, purpose, header, and examples/check-expects portions of your functions. Typically
you'll get at least half-credit for a correct contract, purpose, header, and examples/check-
expects, even if your function body is not correct (and, you'll lose at least half-credit if you
omit these or do them poorly, even if your function body is correct).

Homework problems:

Problem 0
For this assignment, you should be using the Beginning Student language in DrScheme, with
the universe.ss and fabric-teachpack.scm teachpacks installed.

In the definitions window, type in a comment-line containing your name, followed by a
comment-line containing CIS 130 - HW 2, followed by a comment-line with no other text in it
--- that is,
; type in YOUR name
; CIS 130 - HW 2
;

Problem 1
Below what you typed in Problem 0 above, type the comment lines:
; Problem 1
;
Obtain an image -- of one of the formats .jpg, .png, or .gif -- no larger than 100 pixels by 100
pixels. (You can find one on the Web, or create it in some application, etc.) Write a Scheme
definition giving a descriptive name to this image (inserting the image into your DrScheme
definitions window).

CIS 130 - Homework #2 p. 3
Spring 2010

Then, write an expression that uses add-print with this name you've defined to add this
image atop another image of your choice.

Problem 2
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 2
;
Using the design recipe, design a function that produces the volume of a rectangular tank. (You'll
need to consider: how many and what type of expressions should such a function expect, to be
able to produce such a volume?)

One example should suffice for this function.

Problem 3
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 3
;
Using the design recipe, design a function that produces the average gas consumption (in miles-
per-gallon) used for a trip. (You'll need to consider: how many and what type of expressions
should such a function expect, to be able to produce this average?)

One example should suffice for this function.

Problem 4
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 4
;
Using the design recipe, design a function that expects a desired length in pixels and produces a
red square image whose sides are each that length.

Provide at least two examples for this function.

Problem 5
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 5
;
Write a Scheme definition that will define the name MIN-PER-HR to be the number of minutes
in an hour. (This name is an example of a named constant.)
Then, using the design recipe and this named constant, design a function minutes->hours
that expects a number of minutes and produces the number of hours equivalent to that number of
minutes.

(Yes, that "arrow", the dash and right angle bracket ->, is intended -- it is not a typo, and it is
permitted in a Scheme identifier.)

Provide at least two examples, at least one for a number of minutes less than 60, and at least one
for a number of minutes greater than 60.

CIS 130 - Homework #2 p. 4
Spring 2010

Problem 6
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 6
;
Using the design recipe, design a function minutes->wages that expects the number of
minutes someone has worked and his/her hourly wage, and produces the amount he/she is owed
(before taxes or any other adjustments). For full credit, you need to use the function
minutes->hours within the body of minutes->wages.

Provide at least two examples, at least one for a number of minutes less than 60, and at least one
for a number of minutes greater than 60.

Problem 7
Skip a line, and write a comment noting that what follows are your expressions for:
; Problem 7
;
Write a Scheme definition, another named constant, that will define the name IN-PER-FT to be
the number of inches in a foot.

Then, using the design recipe and this named constant, design a function total-inches that
expects a number of feet and a number of inches, and produces the total number of inches. (For
example, the value of the expression (total-inches 4 5) should be 53, because 4 feet
and 5 inches is 53 inches overall.)

Provide at least two examples, at least one for a number of feet of 0, and at least one for a
number of feet greater than 1.

Problem 8
Consider your named image from Problem 1. Also consider the overlay and circle
operations you used in Problem 6 on HW #1.

Using the design recipe, design a function frame-it that expects a desired "matte" color, a
desired "frame" color, and a desired length in pixels. Then it produces the following image: your
named image from Problem 1 atop a circle of the desired "matte" color with that desired length
as its diameter, atop a rectangle of the desired "frame" color with that desired length as its width
and height.

Provide at least two examples.

	Due:
	Purpose:
	How to submit:
	Important notes:
	Homework problems:
	Problem 0
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8

