
CIS 130 - Homework #3 p. 1
Spring 2010

CIS 130 - Homework #3
Due:
Thursday, February 18th, 11:59 pm

Purpose:
More practice writing functions using the design recipe and writing and using named constants, some of
these with the purpose of creating a simple animation.

How to submit:
When you are done with the following problems:

• save your resulting Definitions window contents in a file with the suffix .ss or .scm

• transfer/save that file to a directory on nrs-labs

• use ssh to connect to nrs-labs

• cd to the directory/folder where you saved it (cd 130hw3 for example)

• use ~st10/130submit to submit it

• make sure that ~st10/130submit shows that it submitted your homework .ss or .scm file

• (ASK ME if this is not clear, or if you have any problems with submission!)

Important notes:
• Each student should work individually on this assignment.

• Remember, you are expected to follow the Design Recipe for all functions that you write. (But that's
for functions, not for when you give a name a value, such as when you define a named constant.)
Functions that do not include the expected design recipe parts will not receive full credit.

• Here are some beginning style guidelines for our Scheme code -- we will add to these as the semester
continues:

• You should choose descriptive names for identifiers (parameters, function names, named
constants, those names that the programmer chooses).

• Putting a blank line before and after function definitions makes them easier to read

• The body of a function should never be on the same line as its header -- the body should
always start on the next line after the function header.

• The body of the function should always be indented under the function header.

• Use hard returns rather than letting lines of code wrap to the next line.

Homework problems:

Problem 0
For this assignment, you should be using the Beginning Student language in DrScheme, with the
universe.ss and fabric-teachpack.scm teachpacks installed.

In the definitions window, type in a comment-line containing your name, followed by a comment-line

CIS 130 - Homework #3 p. 2
Spring 2010

containing CIS 130 - HW 3, followed by a comment-line with no other text in it --- that is,

; type in YOUR name
; CIS 130 - HW 3
;

Problem 1
Below what you typed in Problem 0 above, type the comment lines:

; Problem 1
;

(Adapted from a problem by Karen O'Loughlin, Ankeny High School)

To warm up: imagine a class in which the final semester grade is determined as follows:

• The average of all homework scores determines 45% of the final semester grade.

• The average of all quizzes' scores determines 20% of the final semester grade.

• The final exam score determines 35% of the final semester grade.

1 part a
Define named constants for the amount of the final semester grade determined by the homework average,
for the amount of the final semester grade determined by the quiz score average, and for the amount of
the final semester grade determined by the final exam score.

1 part b
Now, using the design recipe, design a function that expects a homework average, a quiz score average,
and a final exam score, and it produces the final semester grade for someone with those scores. For full
credit, make appropriate use of your named constants from part a in your function.

Provide at least two examples for this function.

Problem 2
Skip a line, and write a comment noting that what follows are your expressions for:

; Problem 2
;
In the "Elaborating DrScheme scenes" handout -- available from the public course web page along with
the Week 4 lab exercise, as well as along with this homework handout -- you will find a description of a
make-color function, that expects three numbers, a red-value between 0 and 255, a green-value between 0
and 255, and a blue-value between 0 and 255, and produces a result of type color that is that "mix" of
those red-green-blue -- or RGB -- values.

It turns out that the fabric-teachpack.scm and universe.ss teachpack functions that expect a color string
can also accept the result of a make-color expression. (The fabric-teachpack.scm functions did not used to
work with them -- thus the comment in the "Elaborating DrScheme scenes" handout -- but they seem to
now, in my experiments!) That is, these work:
(create-solid-fabric (make-color 255 0 0) 100 100)

(circle 40 "solid" (make-color 130 40 50))

From now on, then, when a function expects or produces a color, you can consider either a string
containing a color's name or the result of the make-color expression to be of type color (that is, the
contract for make-color would be:

CIS 130 - Homework #3 p. 3
Spring 2010

; contract: make-color: number number number -> color

2 part a
To practice with this function, write at least three expressions (different from the two above) that:

• result in images, and

• use make-color with different combinations of red, green, and blue values than in the two above
examples

2 part b
Now, consider: if you had a function that expects a time-counter value, and produces a color that is
different for different time-counter values as a result, you would need to make sure that you always use
make-color with red, green, and blue values that are strictly between 0 and 255.

(rhetorical question/hint:) If you called the modulo function with a time-counter parameter as its first
expression, what could you use as the second expression to ensure that the resulting value would always
be between 0 and 255?

Using the design recipe, design a function get-color that expects a time-counter value, and produces a
color whose green-value is determined by the result of using the modulo function with that time-counter
value and with that second expression you need to make sure the result is between 0 and 255. You can use
whatever values you would like for the not-changing red-value and blue-value.

I'll provide the check-expects for this function: if you have defined MY-RED and MY-BLUE to be your
desired red and blue values, then the following tests should pass, if your function is working properly:
(check-expect (get-color 57)

 (make-color MY-RED 57 MY-BLUE))

(check-expect (get-color 1000)

 (make-color MY-RED 232 MY-BLUE))

Problem 3
Skip a line, and write a comment noting that what follows are your expressions for:

; Problem 3
;

Now, imagine that, given a time-counter value, you would like a solid circle whose radius is the time-
counter value modulo some maximum radius that you choose, and whose color is the color that get-
color returns for that time-counter value.

Define a named constant for your desired maximum radius for this circle, and then, using the design
recipe, design a function get-circle that expects a time-counter value, and produces just such a circle
image. To receive full credit, your function should appropriately use get-color.

Provide at least two examples for this function, at least one of which has a time-counter value larger than
300.

Problem 4
Skip a line, and write a comment noting that what follows are your expressions for:

; Problem 4
;

CIS 130 - Homework #3 p. 4
Spring 2010

4 part a
Define named constants for your desired scene WIDTH and HEIGHT for an animation -- but for this
particular homework, make sure that they are not the same value; make sure that the difference between
them is at least 50 pixels. For the rest of this homework, use these WIDTH and HEIGHT named constants
to represent the scene's width and height in expressions you write.

4 part b
Define a named constant BACKDROP that has as its value a desired scene with at least four visible images
"placed" within it. (You can put whatever you'd like -- circles, rectangles, images from the web, etc.
Remember, you can use the "Elaborating DrScheme scenes" handout for ideas.)

After this definition, put the now-simple-expression BACKDROP in your Definitions window, so your
backdrop will appear in the Interactions window when the Definitions window contents are Run.

Problem 5
Using the design recipe, design a function create-circle-scene that expects a time-counter value,
and produces a scene that:

• places the image that results from calling Problem 3's get-circle function into your backdrop
from Problem 4,

• ...such that the time-counter helps to determine either the x-coordinate, the y-coordinate, or both where
it will be placed in the scene,

• ...using modulo so that, no matter what the time counter is, the image will always be placed within the
scene (at least part of the circle should always be visible in the scene, no matter how big the time
counter value happens to be)

You may have additional moving or changing images within your created scene if you would like, as long
as the above requirements are also met.

In writing your check-expects for this function, include at least 2 check-expects, and make sure that at
least one of your check-expects is for a time-counter value larger than both the WIDTH and HEIGHT of
your BACKDROP.

Then, write an animate expression that uses your create-circle-scene function to create an
animation.

	Due:
	Purpose:
	How to submit:
	Important notes:
	Homework problems:
	Problem 0
	Problem 1
	1 part a
	1 part b

	Problem 2
	2 part a
	2 part b

	Problem 3
	Problem 4
	4 part a
	4 part b

	Problem 5

