
CIS 130 - Homework #6 p. 1
Spring 2010

CIS 130 - Homework #6
Due:
Friday, April 2nd, 11:59 pm (due one day later because of the Cesar Chavez holiday, March 31)

Purpose:
More C++ practice writing if statements, writing bool and main functions, and using local
variables, interactive input, and interactive output.

How to submit:
When you are done with the following problems:

• (Assuming that you are still ssh'd and logged into to nrs-labs, since you will be writing and
testing these C++ functions on nrs-labs using the funct_play2/funct_compile/
expr_play tools)

• Make sure your current working directory on nrs-labs is the one where your homework files
are: do the command:

ls

...and make sure you see the names of your homework files listed.

– If you are not in the proper directory, use cd directory_name to go to the proper
directory. (For example, cd 130hw05)

• use ~st10/130submit to submit all of your .cpp and .h files in the current directory.

– Remember, I don't mind if extra .cpp and .h files get submitted as well.

– Make sure that ~st10/130submit shows that it submitted all of your homework files.

• (ASK ME if this is not clear, or if you have any problems with submission!)

Important notes:
• Each student should work individually on this assignment.

• Remember, you are still expected to follow the Design Recipe for all functions that you write.
(Remember to use C++ type names in C++ function contracts, and to write C++ specific
examples/tests as discussed in class.)

• Remember to follow the class style guidelines (more have been added for C++ -- see the in-
class examples and postings).

Homework problems:

Problem 0
Create, protect, and change to a directory 130hw06 -- type the following from your home
directory on nrs-labs:
[you1@nrs-labs ~]$ mkdir 130hw06

CIS 130 - Homework #6 p. 2
Spring 2010

[you1@nrs-labs ~]$ chmod 700 130hw06

[you1@nrs-labs ~]$ cd 130hw06

(If you log out and come back later, remember to cd 130hw06 each time to return to this
directory!)

Problem 1
Recall the function from Homework 4, Problem 5 that computes number of hours of exercise
required to counter the excess fat from eating pizza. Use funct_play2 to develop a C++
version of this function named workout . (workout expects expects a number that represents
daily pizza consumption, in slices, and produces a number, in hours, that represents the amount
of exercise time that you need.

For a daily intake of : You need to work out for :

0 slices 1/2 hour

1 to 3 slices 1 hour

>3 slices 1 hour +1/2 hour per slice above 3)

Submit your resulting workout.cpp, workout.h, and workout_ck_expect.cpp files.

Problem 2
Now, a little practice with just boolean logic in C++, with a bool function that does not require
an if statement. Use funct_play2 to develop a C++ bool function is_an_op that expects a
single character (so, type char, rather than type string), and produces whether or not that
character is '+', '-', '*', or '/'.

While I would prefer that you write a single boolean expression that will be true if the expression
given is one of those 4 characters, and will be false otherwise, you may use an if if you must...

(Note: it is a COURSE STYLE STANDARD that you use the C++ type bool, and the bool
literals true and false, when you are dealing with boolean values. Using int or 1 or 0 (or
other integers) instead within your code will cause you to lose points.)

Submit your resulting is_an_op.cpp, is_an_op.h, and is_an_op_ck_expect.cpp
files.

Problem 3
For some more C++ branching practice, and to use is_an_op: use funct_play2 to develop
a C++ function do_op that expects an operator expressed as a character and two numbers, and
produces the result of performing the specified operation on those two numbers. These are
further requirements for this function:

• it is required to appropriately use the C++ if statement

• it is required to appropriately use Problem 2's is_an_op function

• it should produce a value of 0.0 if it is called with an operator character besides '+', '-',
'*', or '/'

• it should also produce a value of 0.0 if someone attempts to divide by 0.

CIS 130 - Homework #6 p. 3
Spring 2010

Submit your resulting do_op.cpp, do_op.h, and do_op_ck_expect.cpp files.

Problem 4
To practice with interactive input, write a small function get_balance that expects nothing,
interactively asks the user to enter a balance owed, and then returns that entered balance.

(Note: you can use funct_play2 to create this function, although its ck_expect will need
editing before it will work, as we discussed in class.)

To test get_balance, either edit get_balance_ck_expect.cpp or write a small testing
main function in a file named get_balance_test.cpp to print a message to the screen
saying that you are testing get_balance, and then print out the value of a testing call of
get_balance.

Submit your files get_balance.cpp, get_balance.h, and either your edited
get_balance_ck_expect.cpp or get_balance_test.cpp.

Problem 5
To practice writing a void function, write a function make_bill that expects a person's first
name, a person's last name, and a balance owed, and it returns nothing, but it has the side-effect
of printing to the screen a neatly-formatted personalized bill including the balance owed, in the
following format:
**
To: last name, first_name

Your current balance is: $current_balance

Please remit the balance owed by the 10th of the month
to avoid late fees on the last_name account. Thank you.
**
That is, the call:

make_bill("Thomas", "Jefferson", 38.33);

would return nothing, but would have the side-effect of causing the following to be printed to the
screen:
**
To: Jefferson, Thomas

Your current balance is: $current_balance

Please remit the balance owed by the 10th of the month
to avoid late fees on the Jefferson account. Thank you.
**
Please note: We have not covered numeric formatting using cout yet, so you are not required to
format the balance so that it prints to two fractional places. Whatever default formatting the
cout uses for that balance is fine.

To test make_bill, write a small testing main function in a file named
make_bill_test.cpp that:

CIS 130 - Homework #6 p. 4
Spring 2010

• prints a message to the screen saying that you are testing make_bill

• calls make_bill at least twice, with different names and different balances

• (don't forget -- it needs to #include "make_bill.h" since it calls make_bill)

(Also remember: to compile and link the functions making up this small program
make_bill_test, you need to execute an appropriate g++ command at the nrs-labs prompt
-- remember to include the .cpp files for both source code files involved, make_bill.cpp
and make_bill_test.cpp. Remember, too, that you can use the compile_helper tool
to help you "build" such a g++ command, if you would like.)

Submit your files make_bill.cpp, make_bill.h, and make_bill_test.cpp.

Problem 6
Here is a rather odd function: get_name expects a string describing the "kind" of name it
should ask for, it interactively asks the user to enter that kind of a name, and then it returns the
name thus entered.

That is, for the expression:
get_name("first")

...it would ask the user to:
Please enter a first name:

and then read in, and return, the first name the user enters. If the user entered Matilda, then
get_name("first") == "Matilda" would be true.

And, for the expression:
get_name("last")

...it would ask the user to:
Please enter a last name:

and then read in, and return, the last name the user enters. If the user entered Jones, then
get_name("last") == "Jones" would be true.

But, it just trustingly asks for whatever kind of name it is given -- that is, for the expression:
get_name("hairy")

...it would ask the user to:
Please enter a hairy name:

and then read in, and return, the hairy name the user enters. If the user entered Bigfoot, then
get_name("hairy") == "Bigfoot" would be true.

(Note: you can use funct_play2 to create this function, although its ck_expect will need
editing before it will work, as we discussed in class.)

To test get_name, either edit get_name_ck_expect.cpp or write a small testing main
function in a file named get_name_test.cpp to print a message to the screen saying that
you are testing get_name, and then print out the value of at least two testing calls of
get_name, each with a different argument.

CIS 130 - Homework #6 p. 5
Spring 2010

Submit your files get_name.cpp, get_name.h, and either your edited
get_name_ck_expect.cpp or get_name_test.cpp.

Problem 7
Now write a main function in a file named billing that does the following:

• it should call get_name appropriately to obtain a customer's first name,

• it should call get_name appropriately to obtain a customer's last name,

• it should call get_balance appropriately to get a balance owed, and

• it should call make_bill appropriately to print out a bill for that customer.

Remember: every function called by a function needs to #include for that function's header
file. Also remember that all of the .cpp files used in a program need to be in its g++ statement
for compiling it, and that you can, if you would like, use compile_helper to help you
"build" such a g++ statement.

We don't have a good way to write testers for main functions, so test-run your billing
program until you are satisfied that it works properly, and submit your file billing.cpp.

	Due:
	Purpose:
	How to submit:
	Important notes:
	Homework problems:
	Problem 0
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7

