
CIS 130 - Homework #7 p. 1
Spring 2010

CIS 130 - Homework #7
Due:
Thursday, April 22nd, 11:59 pm

Purpose:
Mostly practice writing C++ functions and programs involving repetition.

How to submit:
When you are done with the following problems:

• (Assuming that you are still ssh'd and logged into to nrs-labs, since you will be writing and
testing some of these C++ functions on nrs-labs using the
funct_play2/funct_compile/ expr_play tools, and writing and testing others
using nano and g++)

• Make sure your current working directory on nrs-labs is the one where your homework files
are: do the command:

ls

...and make sure you see the names of your homework files listed.

– If you are not in the proper directory, use cd directory_name to go to the proper
directory. (For example, cd 130hw07)

• use ~st10/130submit to submit all of your .cpp and .h files in the current directory.

– Remember, I don't mind if extra .cpp and .h files get submitted as well.

– Make sure that ~st10/130submit shows that it submitted all of your homework files.

• (ASK ME if this is not clear, or if you have any problems with submission!)

Important notes:
• Each student should work individually on this assignment.

• Remember, you are still expected to follow the Design Recipe for all functions that you write.
(Remember to use C++ type names in C++ function contracts, and to write C++ specific
examples/tests as discussed in class.)

• Remember to follow the class style guidelines (more have been added for C++ -- see the in-
class examples and postings).

Homework problems:

Problem 0
Create, protect, and change to a directory 130hw07 -- type the following from your home
directory on nrs-labs:
[you1@nrs-labs ~]$ mkdir 130hw07

CIS 130 - Homework #7 p. 2
Spring 2010

[you1@nrs-labs ~]$ chmod 700 130hw07

[you1@nrs-labs ~]$ cd 130hw07

(If you log out and come back later, remember to cd 130hw07 each time to return to this
directory!)

Problem 1
Using funct_play2, develop a C++ function line_of_X that expects a desired number of
X's, and doesn't return anything, but has the side-effect of printing to the screen that many X's,
followed by a newline character.

That is, the call:
line_of_X(3);

...would return nothing, but would have the side-effect of causing the following to be printed to
the screen:
XXX

(remember that it SHOULD output a newline at the end of those 3 X's.)

Because line_of_X is a void function, to test it, use nano (or your favorite text editor) to
write a small testing main function in a file named line_of_X_test.cpp, using the main
function template (main_template.txt) available on the public course web page. (Helpful
hints: make sure you have a #include line for line_of_X.h at the beginning of this main
function, and remember you can compile this using g++, with or without help from
compile_helper.)

Here are the requirements for line_of_X_test.cpp:

• it must call line_of_X at least 3 times, each time with a different argument value

• precede each of these calls with a cout saying how many X's ought to be seen on the next
line -- then anyone looking at this program's results can reasonably tell if the testing calls
worked.

Submit your files line_of_X.h, line_of_X.cpp, and line_of_X_test.cpp.

Problem 2
Using funct_play2, develop a C++ function box_of_X that expects a desired number of
rows and a desired number of X's per row, and doesn't return anything, but has the side-effect of
printing to the screen that many rows of X's, each with that many X's per row, ending up with
printing a newline character. This function must appropriately call line_of_X.

(After all -- each time you want the side-effect of a row of X's printed to the screen, you should
know after Problem 1 how to get that...)

That is, the call:
box_of_X(3, 5);

...would return nothing, but would have the side-effect of causing the following to be printed to
the screen:
XXXXX
XXXXX

CIS 130 - Homework #7 p. 3
Spring 2010

XXXXX
(remember that it SHOULD output a newline at the end of the "box".)

Again, because box_of_X is a void function, to test it, use nano (or your favorite text editor)
to write a small testing main function in a file named box_of_X_test.cpp, using the main
function template (main_template.txt). (When you compile this program, what three
.cpp files do you need to be sure to list in the g++ command?)

Here are the requirements for box_of_X_test.cpp:

• it must call box_of_X at least 2 times, each time with different argument values

• precede each of these calls with a cout saying how many rows of how many X's ought to be
seen starting on the next line -- then anyone looking at this program's results can reasonably
tell if the testing calls worked.

Submit your files box_of_X.h, box_of_X.cpp, and box_of_X_test.cpp.

Problem 3
Using funct_play2, develop a C++ function triangle that expects the number of rows
desired for a triangle, and doesn't return anything, but has the side-effect of printing to the screen
a "triangle" of X's that many rows tall, with one X in the first row, two X's in the second row, and
so on, ending up with printing a newline character. This function must appropriately call
line_of_X.

That is, the call:
triangle(5);

...would return nothing, but would have the side-effect of causing the following to be printed to
the screen:
X
XX
XXX
XXXX
XXXXX

(remember that it SHOULD output a newline at the end of the "triangle".)

Again, because triangle is a void function, to test it, use nano (or your favorite text editor)
to write a small testing main function in a file named triangle_test.cpp, using the main
function template (main_template.txt). (When you compile this program, what three
.cpp files do you need to be sure to list in the g++ command?)

Here are the requirements for triangle_test.cpp:

• it must call triangle at least 2 times, each time with a different argument value

• precede each of these calls with a cout saying how how tall a triangle ought to be seen
starting on the next line -- then anyone looking at this program's results can reasonably tell if
the testing calls worked.

Submit your files triangle.h, triangle.cpp, and triangle_test.cpp.

CIS 130 - Homework #7 p. 4
Spring 2010

Problem 4
Consider your triangle program from Problem 3. A client has decided that she would like a
program that interactively asks how many such triangles (of different heights) are desired, and
then it should ask for precisely that many triangle heights, each time then printing to the screen
(with the help of the triangle function) a triangle of that height.

Use nano (or your favorite text editor) to write a main function in a file many_tris.cpp
that does this. You are required to call triangle appropriately in your solution.

We don't have a good way to write testing functions for main functions, but of course you can
and are expected to test-run such a program on an appropriate variety of test cases until you are
convinced that it is working properly. (In this case, it is also wise to test it on a case in which the
user says, when asked, that he/she wants 0 triangles. What should happen in that case?) Test-run
your many_tris program until you are satisfied that it works properly, and submit your file
many_tris.cpp.

Problem 5
Recall the function from Homework 6, Problem 1, workout, that expects expects a number that
represents daily pizza consumption, in slices, and produces a number, in hours, that represents
the amount of exercise time that you need.

This function could be used within a sentinel-controlled loop to let a user know the amount of
exercise time needed for different quantities of pizza.

Use nano (or your favorite text editor) to write a main function in a file advice.cpp that
provides an interactive "interface" for the function workout. (Remember, you can obtain a
copy of an example version of workout.h and workout.cpp from the Homework 6
"Selected solutions" section on the course Moodle site, if you need or would like to.) You will
need to have copies of workout.h and workout.cpp in your 130hw07 directory.

That is, your main function will prompt the user for different amounts of daily pizza
consumption in slices, and then use workout to determine the amount of exercise time needed
to work off each such pizza quantity, printing a clear message to the screen including that
exercise amount, until the user indicates that he/she would like to stop.

Make sure that this main function uses a properly structured sentinel-controlled loop in asking
the user to enter for the next daily pizza consumption value, using workout appropriately to
then compute and then display the exercise amount needed for working off that level of pizza
consumption. What would be an appropriate sentinel value for this situation? Decide, and
include what the user needs to type in to quit as part of your interactive prompt to the user.

Test-run your advice program on an appropriate variety of test cases until you are convinced
that it is working properly. (In this case, it is also wise to test it on a case in which the user
immediately enters the sentinel value, the first time he/she is asked. What should happen in that
case?) Then, submit your file advice.cpp.

	Due:
	Purpose:
	How to submit:
	Important notes:
	Homework problems:
	Problem 0
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

