
CIS 130 - Homework #9 p. 1
Spring 2010

CIS 130 - Homework #9
Due:
Thursday, May 6th, 11:59 pm

Purpose:
Mostly practice writing C++ functions and programs involving pass-by-reference, repetition, and arrays

How to submit:
When you are done with the following problems:

• (Assuming that you are still ssh'd and logged into to nrs-labs, since you will be writing and testing
some of these C++ functions on nrs-labs using the funct_play2/funct_compile/
expr_play tools, and writing and testing others using nano and g++)

• Make sure your current working directory on nrs-labs is the one where your homework files are: do
the command:

ls

...and make sure you see the names of your homework files listed.

– If you are not in the proper directory, use cd directory_name to go to the proper directory.
(For example, cd 130hw09)

• use ~st10/130submit to submit all of your .cpp and .h files in the current directory.

– Remember, I don't mind if extra .cpp and .h files get submitted as well.

– Make sure that ~st10/130submit shows that it submitted all of your homework files.

• (ASK ME if this is not clear, or if you have any problems with submission!)

Important notes:
• Each student should work individually on this assignment.

• Remember, you are still expected to follow the Design Recipe for all functions that you write.
(Remember to use C++ type names in C++ function contracts, and to write C++ specific
examples/tests as discussed in class.)

• Remember to follow the class style guidelines.

• IF you choose to use Dev-C++ for any of these problems, remember that:

– you need to make a .h file for each non-main function (make sure it follows the template given on
the public course web page for .h files)

– you need system("PAUSE"); before the return EXIT_SUCCESS; in each main function

– you need to include your contract, purpose, examples, name, and date last modified in an opening
comment block in each .cpp file

CIS 130 - Homework #9 p. 2
Spring 2010

Homework problems:

Problem 0
Create, protect, and change to a directory 130hw09 -- type the following from your home directory on
nrs-labs:
[you1@nrs-labs ~]$ mkdir 130hw09

[you1@nrs-labs ~]$ chmod 700 130hw09

[you1@nrs-labs ~]$ cd 130hw09

(If you log out and come back later, remember to cd 130hw09 each time to return to this directory!)

Problem 1
Write a function accelerate that expects a single pass-by-reference parameter, representing a speed,
and it increases the corresponding argument's value by 10%.

(Note that this, then, is an input/output parameter, as it is used both for providing information to the
function and for giving information back to the caller.)

That is, if you did:
double curr_speed = 48;
accelerate(curr_speed);

...then after these two statements, the following expression should be true:
curr_speed == 52.8

(although you might need: abs(curr_speed - 52.8) < .001)

What should you remember to use to represent 10% in your program?

To test your function, either modify accelerate_ck_expect.cpp or write a main function in
accelerate_test.cpp that performs at least the above actions and then outputs the result of the
expression shown (being sure to use:
 cout << boolalpha;

...before trying to print out the results of the expression comparing curr_speed to its expected value.
That way, you'll see true or false printed for the value of this bool expression.)

Submit your files accelerate.h, accelerate.cpp, and either
accelerate_ck_expect.cpp or accelerate_test.cpp

Problem 2
(This problem does not involve pass-by-reference.) There are times when you just want to see what is in
an array.

Write a function show_values that expects an array of doubles, its size, and a desired title, and it
doesn't return anything, but simply has the side-effect of printing to the screen that title, followed by a
blank line, followed by the array's values.

That is,
const int NUM_TEMPS = 6;

CIS 130 - Homework #9 p. 3
Spring 2010

double temps[NUM_TEMPS] = {3, 1, 6.6, 2, 8, 4};
show_values(temps, NUM_TEMPS, "This Week's Temperatures");

...would cause the following to be printed to the screen:
This Week's Temperatures:

3
1
6.6
2
8
4

To test your function, either modify show_values_ck_expect.cpp or write a main function in
show_values_test.cpp that performs at least the above actions and then outputs the result of the
expression shown.

Submit your files show_values.h, show_values.cpp, and either
show_values_ck_expect.cpp or show_values_test.cpp

Problem 3
Now, put these pieces from Problems 1 and 2 together.

Write a main function in a file combo.cpp that:

• declares and initializes an example array of doubles of your choice.

• calls show_values appropriately with the title "BEFORE" to show the initial version of the array

• calls accelerate for each item in the array

• calls show_values appropriately with the title "AFTER" to show what is now in the array.

Submit your file combo.cpp.

Problem 4
Consider: we discussed a function swap that simply swaps the values of its two pass-by-reference
parameters.

There are occasionally times where we just want to two variables' values to be in order -- say, for our
purposes here, increasing/ascending order.

Write a function arrange that expects two pass-by-reference double parameters, and if the first
argument is greater than the second, it rearranges their values -- swaps their values -- so that the
corresponding first argument now contains the smaller value, and the corresponding second argument
now contains the larger value. But if the first isn't greater than the second, the corresponding argument
remain unchanged.

(Thus, after calling this, you can be assured that the first argument's value will be <= the second
argument's value...)

(Note that both of these happen to be input/output parameters -- both are used as input to the function,
and both may be used to give a result back to the caller.)

CIS 130 - Homework #9 p. 4
Spring 2010

That is, if you did:
double alpha = 100.1;
double beta = 50.6;
double gamma = 200.3;
double theta = 200.3;

arrange(alpha, beta);

then afterwards the following expressions should be true:
alpha == 50.6
beta == 100.1

for:
arrange(beta, gamma);

then afterwards the following expressions should be true:
beta == 100.1
gamma = 200.3

(yes, in this case the arguments are unchanged -- they are already in the desired order)

for:
arrange(gamma, theta);

then afterwards the following expressions should be true:
gamma = 200.3
theta = 200.3

(yes, in this case the arguments are unchanged -- they are already in the desired order)

To test your function, either modify arrange_ck_expect.cpp or write a main function in
arrange_test.cpp that performs at least the above actions and then outputs the result of the
expression shown.

Submit your files arrange.h, arrange.cpp, and either arrange_ck_expect.cpp or
arrange_test.cpp

Problem 5
Write a function max_and_count that expects 2 input parameters, an array of doubles and its size,
and 2 output parameters, that it should set to the maximum value in the array, and how many times that
maximum value appears, respectively. It should not return anything.

To test your function, either modify max_and_count_ck_expect.cpp or write a main function
in max_and_count_test.cpp that calls this for at least two different example arrays, at least one
of which contains more than one instance of its maximum value. It should print to the screen the result
of comparing the actual resulting values in the calls' 3rd and 4th arguments to the expected values for
those arguments (using boolalpha to make sure that true/false are shown instead of 1/0 when
the results of these bool expressions are printed to the screen).

Submit your files max_and_count.h, max_and_count.cpp, and either
max_and_count_ck_expect.cpp or max_and_count_test.cppdoubl

	Due:
	Purpose:
	How to submit:
	Important notes:
	Homework problems:
	Problem 0
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

