
CS 335 - Homework 4 p. 1

CS 335 - Homework 4

Deadline:
Due by 11:59 pm on Friday, March 4

How to submit:
Submit your files for this homework using ~st10/335submit on nrs-labs, with a homework
number of 4

Purpose:
Learning a bit about Scheme let/let*/letrec, practicing thinking about static versus dynamic
scoping, thinking a bit about binding times for various attributes of names

The Problems:

Problem 1
Start a Scheme file 335hw4-1-2.scm or 335hw4-1-2.ss. The first thing in this file should be
comments containing at least:

• your name
• CS 335 - Homework 4 - Problems 1, 2
• and the last-modified date

Now follow that with a comment containing Problem 1, followed by your answers for this problem.

Problem 1 Background
Lisp/Scheme can have local variables within an expression, including a function body (again, that we
typically do not change once we have set them... 8-)) with the help of three special expressions,
let/let*/letrec

It is pretty straightforward, although a bit tricky in terms of parentheses:
(let ((name1 expr1)
 (name2 expr2)
 ...
 (name-n expr-n))
 expr-in-let1
 expr-in-let2
 ...
 expr-in-let-n
)

CS 335 - Homework 4 p. 2

Within the expressions expr-in-let1 .. expr-in-let-n, the names name1 .. name-n
will have as their values the values of the expressions expr1 .. expr-n respectively.

As a very simple example, consider:
(let ((x 1)
 (y 2)
 (z 3))
 (list x y z))

The value of this expression will be (list 1 2 3).

Why do we need let* and letrec, then? For this reason: let behaves as if its assignments of
values to names occurs in parallel -- an assignment from "earlier" in the let cannot be seen "later" in
the let. (Thus, the local definitions are independent of one another.) The following fragment
demonstrates this:
(define x 27)

(let ((x 1)
 (y x))
 (+ x y))

What do you think the value of this expression will be? Actually, it is 28 -- try it!

(Why? Because the assignments are done as if in parallel, independent of one another -- x is assigned 1,
but y is assigned to the value of expression x in parallel -- it can't/doesn't know that a "local" x has
been set to 1. It can only see the "external" x of 27, and so y is set to 27, and 1 + 27 is added to get 28.)

If you would like the assignments within to be able to depend on the previous assignments -- which is
definitely stepping further away from functional programming, I think! -- you'd use let*, which does
make these assignments sequentially, and so able to depend on earlier assignments within the same
expression. That is,
(let* ((x 1)
 (y x))
 (+ x y))

...does have the value of 2 that you probably expected earlier. y can be assigned to the just-assigned
local x.

That leaves letrec -- why would you ever need that? Why, for mutually recursive definitions:
(letrec
 ((local-even? (lambda (n) (cond ((= n 0) #t)
 (else (local-odd? (- n 1))))))
 (local-odd? (lambda (n) (cond ((= n 0) #f)
 (else (local-even? (- n 1)))))))
 (list (local-even? 23) (local-odd? 23)))

Because local-even?'s lambda expression refers to local-odd?, and local-odd?'s lambda
expression refers to local-even?, the only way this can work is with letrec.

CS 335 - Homework 4 p. 3

Now -- why would you even bother with these? Most commonly when the same expression is used
several times within a function:
(define (delete item a-list)
 (cond
 ((null? a-list) a-list)
 ((list? (car a-list))
 (cons (delete item (car a-list))
 (delete item (cdr a-list))))
 ((equal? item (car a-list))
 (delete item (cdr a-list)))
 (else
 (cons (car a-list)
 (delete item (cdr a-list))))
)
)

let allows us to rewrite this replacing repeated expressions with a local name instead:
(define (delete item a-list)
 (cond
 ((null? a-list) a-list)
 (else
 (let ((rest-result (delete item (cdr a-list))))
 (cond ((list? (car a-list))
 (cons (delete item (car a-list))
 rest-result))
 ((equal? item (car a-list)) rest-result)
 (else (cons (car a-list) rest-result))))
)
)
)

...but in a less-functional setting, it is very handy when doing various kinds of input/output to be able to
give a name to a newly-read-in-value within a function, or to give a name to a file input stream or file
output stream, for example. If you remember that (read) has as its result whatever the user types in
at that point -- what if you'd like to, say, do one thing to the value if it is a number, and something else
if it is not? Then let makes that easier:
(define (interactive-react)
 (display "type in something: ")
 (let ((input-val (read)))
 (cond
 ((number? input-val) (* input-val input-val))
 (else (list input-val input-val)))
)
)

(This is not pure functional programming here -- but no-argument functions are allowed in R5RS

CS 335 - Homework 4 p. 4

Scheme, and you can run the above function by simply typing:
(interactive-react)

...!)

See if you can read, and reason out, the value of the following expressions. For each part, write a
comment giving what you think the value of this expression should be, and then type this expression
into DrRacket and see if you determined it correctly. (Yes, it is OK to change your comment if you got
it wrong -- BUT I am expecting that you will think about it until you see why that is its value...)

1 part a
(let ((stuff '(3 4 5))
 (nonsense '("ha" "byte")))
 (cons (car nonsense) stuff))

1 part b
(let ((x 3))
 (list x
 (let ((x (* x x)))
 (+ x x))
 x
 (let ((x (+ x x)))
 (* x x))
 x)
)

1 part c
(let ((x 17))
 (list
 (let ((x 2) (y (- x 2)))
 (* x y))
 x
 (let* ((x 2) (y (- x 2)))
 (* x y))
 x
 (letrec ((frick (lambda (x)
 (cond ((< x 0) 0)
 (else (+ x (frack (- x 1))))))
)
 (frack (lambda (y)
 (cond ((< y 0) 0)
 (else (* y (frick (- y 1))))))
))
 (list (frick 3) (frack 3)))
 x
)
)

CS 335 - Homework 4 p. 5

Problem 2
Put a comment containing Problem 2, followed by your answers for this problem.

With the help of let, display, and read, design a no-parameter function get-type-string
that expects nothing, but it uses display to print a request to type something in to the screen and then
it uses let to give a local name to what the user then enters, then allowing the function to return a
string that gives the name of the type of the value that the user entered.

Your function should check for at least the following: if the typed-in value is boolean, a number, a list,
a symbol, or a string. (Yes, there do happen to be built-in predicate functions for each of these types...
8-)) You may check for other types IF you would like -- and if the type is none of the types you've
checked for, return the string "other".

Being interactive, automated tests of this are tricky! Put in at least one call to your function after you
define it -- I'll just have to trust that you've really run it multiple times, and made sure to have tested
each of its branches.

335hw4-1-2.scm is now ready to submit.

Problem 3
For the rest of the problems in this assignment, create a file 335hw4-rest.txt, and type in their
answers there. Then consider the following fragment of code, written in pseudocode:
int x = 0;
int y = 0;

void function thing1()
{
 int x = 0;
 print "in thing1\n";
 x = 7;
 y = 8;
 thing2();
 print "in thing1: " + x + "\n";
 print "in thing1: " + y + "\n";
}

void function thing2()
{
 int y = 0;
 print "in thing2\n";
 x = 2;
 y = 108;
 print "in thing2: " + x + "\n";
 print "in thing2: " + y + "\n";
}

x = 50;
y = 60;
print "here\n";
thing1();
print "and now\n";
print "at end: " + x + "\n";
print "at end: " + y + "\n";

CS 335 - Homework 4 p. 6

3 part a
Type 3 part a into your file. Then, assume that the above fragment uses static scoping, and type in
what this fragment would print to the screen in that case.

3 part b
Type 3 part b into your file. Then, assume that the above fragment uses dynamic scoping, and type
in what this fragment would print to the screen in that case.

(And, by the way -- if you were to study the little Perl static and dynamic scoping examples posted
from Week 6 Lecture 2, I believe you could actually determine how to convert the above fragment into
two little Perl fragments to actually double-check your answers. You don't have to, but you could. If
you do, though, (1) be sure to first figure out what the answers should be, to see if you are getting these
concepts, and (2) if the answers are different, be sure to figure out why...)

Problem 4
Consider static and dynamic binding times, as discussed in lecture. If we limit ourselves to just the
options of static binding time or dynamic binding time (that is, without all of the static binding time
subcategories discussed), for each of the following, put the part number followed by which binding
time is most appropriate:

4 part a
What is the binding time for the type attribute of a local C++ pointer variable?

4 part b
What is the binding time for the value attribute of a local C++ pointer variable?

4 part c
What is the binding time for the location attribute of a local C++ pointer variable?

4 part d
Fictitious language ElmTree has as part of its language definition that pi is a reserved word, whose
value is the value of pi to 48 places. What is the binding time for the value attribute of the ElmTree
name pi?

4 part e
What is the binding time for the type attribute of a Scheme variable?

4 part f
What is the binding time for the location attribute of a C global variable?

	Deadline:
	How to submit:
	Purpose:
	The Problems:
	Problem 1
	Problem 1 Background
	1 part a
	1 part b
	1 part c

	Problem 2
	Problem 3
	3 part a
	3 part b

	Problem 4
	4 part a
	4 part b
	4 part c
	4 part d
	4 part e
	4 part f

