
CS 335 - Homework 9 p. 1

CS 335 - Homework 9

Deadline:
Due by 11:59 pm on Friday, April 29th

How to submit:
Submit your files for this homework using ~st10/335submit on nrs-labs, with a homework
number of 9

Purpose:
To get practice creating classes and methods in the Squeak implementation of Smalltalk-80.

By the end of doing this homework you should:

• Understand the functions of the most common windows in Squeak

• Be able to create classes in the System Browser

• Be able to create method categories and write code for methods in the System Browser

• Be able to use the Workspace to test your code

This was adapted from:

http://www.cosc.canterbury.ac.nz/wolfgang.kreutzer/cosc205/smalltalk1.html

http://www.cc.gatech.edu/classes/AY2000/cs2803ab_fall/labs/IntroLab.html

http://www.cc.gatech.edu/classes/AY2000/cs2803ab_fall/labs/MuppetLab.html

Important notes:
• You are expected to use the Squeak implementation of Smalltalk (available from www.squeak.org).

• To describe which variety of 3-button mouse click is expected: Recall the "chart" from lecture:

Color Mac mappings Windows mappings usual "meaning"

 Red (left) click button left-click move/select
 Yellow (m) option-click right-click context menu
 Blue (rt) command-click ALT-left-click window/Morphic

This is the chart I gave in class, and that is in my notes; HOWEVER, I am finding that whenever a
yellow button click is asked for, I'm having to use what I thought was called command-click on my
Mac to get it to happen (clicking while pressing the apple-key); if you are using a Mac, please give
this a try if you are having trouble in this situation.

In this handout, I'll try using Color/Windows/Mac to indicate a which click I mean -- red/left-
click/click, yellow/right-click/option-click, or blue/ALT-left-click/command-click.

CS 335 - Homework 9 p. 2

• We're seeing that Squeak tends to provide multiple ways to do things; here I am giving one way, but I
suspect there are other ways of doing many of these actions as well.

The Problems:

Problem 1:
The purpose here is simply to walk through the process of defining one's own classes.

Domain: "a small segment of Sesame Street, a well known urban neighborhood populated by a wide
range of rather exotic creatures"

...but we'll start simply, with just two classes: Monster and CookieMonster

• (note that Smalltalk class names are expected (convention) to be written in CamelCase starting with
an upperclass letter -- as in Java...)

Monster will be an abstract class, describing "a number of aspects common to monsters of all walks
of life", and CookieMonster will be a subclass of Monster.

In modeling monsters for our purposes, what do we care about? We'll start simply: monsters are
characterized (to start) as a colour and a tummy. The colour will be stored as a symbol, and at
creation monsters are equipped with an empty tummy instantiated to a predefined data structure called
Bag.

• By the way: in C++, you probably called colour and tummy the data fields for class Monster --
the Smalltalk references being used for this homework call them "instance variables".

Monsters should be able to eat, and to answer whether their tummy is empty. These, then, will be
methods of the Monster class.

• You should be used to the concepts of accessor methods (to obtain the value of data fields) and
modifier methods (to modify the value of a data field) from C++ object-oriented programming; in
Smalltalk, the instance methods, or methods for an instance of the class, are categorized as
initialization, access, queries, and actions.

By the way -- since Smalltalk classes are also objects, they may also have class methods, or methods
for the class itself, in addition to instance methods. For example, a class should have a class method for
creating a new instance of the class -- so Monster will need this.

What is special about CookieMonsters in particular? Well, they continually nag for cookies, which are
the only food they will eat. Once awakened they may only be silenced once their immediate hunger has
been stilled, after which they will fall asleep until some foolish user wakes them again. So,
CookieMonster has two additional data fields/instance variables, state and hunger. Its state
is a symbol, either #awake or #asleep, and its hunger is a number, determined at random when it
wakes up.

CookieMonster should override Monster's eat instance method, since they only like to each
cookies. As they are not particularly strong, they must also know how to solicit food by begging, and
the nag instance method will offer this functionality. And, there will be instance methods for testing
items prior to digestion, and for describing how a CookieMonster instance will beg.

CS 335 - Homework 9 p. 3

Now: to implement all this in Squeak, we will:

• first make a new class category, SesameStreet

• add the Monster and CookieMonster classes to the SesameStreet class category

• define and test (or at least exercise) all of these class' methods

We'll use a Browser to do the above, and use a Workspace along with another type of view, called
Inspector, for testing/exercising purposes.

Creating a new class category
• open up a System Browser (called just a Browser in the Tool menu)

• to create a new class category: yellow/right-click/option-click in top-left browser window, select
"add item" option; (fill in desired name, here SesameStreet, in the dialog window that should
appear) and accept;

• Classes can be defined once the new class category has been added to the system.

Adding a new class to a class category
• In the top-left Browser window, select (red/left-click/click) the desired class category that is to have

a new class

• Now the bottom Browser pane will show a template for a class definition, which you can fill in as
desired:

Object subclass: #NameOfSubclass
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'SesameStreet'

– Notice how the class category is already filled in for you.

– You don't have to fill everything in -- for example, we won't be filling in anything for
poolDictionaries at this point.

– Like Java, notice that there is an Object superclass that a class is a subclass of if it isn't
otherwise explicitly a subclass of another class.

– We'll edit this class definition as follows:

Object subclass: #Monster
instanceVariableNames: 'colour tummy'
classVariableNames: ''
poolDictionaries: ''
category: 'SesameStreet'

– enter a comment describing this class in the lower portion of this pane:

"This ABSTRACT class implements some generic structure and behavior
common to different types of monsters in the world of Sesame Street."

CS 335 - Homework 9 p. 4

– I then command-clicked (but, I think this should be yellow/right-click/option-click) to get a menu
with an accept option; select this to save your new class.

– Choosing accept from the menu compiles the definition and adds it to the dictionary of classes
the system knows about.

– Hopefully, you now see Monster in the top-row-second-windowpane of the System Browser,
here indicating that it is a class in class category SesameStreet.

– Note that choosing "update" from the leftmost browser pane's yellow/right-click/option-click
button menu may sometimes be needed to force a browser to show the most recent changes.

• Now set up a class for CookieMonster

– In the top-left Browser window, select (red/left-click/click) the desired class category
SesameStreet. (To "get out" of the Monster class, I clicked on Monster's class name in the
second pane, and then re-clicked on SesameStreet in the first pane. Then there was a new class
template in the lower window to fill in.)

– When filling in this class definition, we want to specify that CookieMonster is a subclass of
Monster:

• Now the bottom Browser pane will show a template for a class definition, which you can fill in as
desired:

Monster subclass: #CookieMonster
instanceVariableNames: 'state hunger'
classVariableNames: ''
poolDictionaries: ''
category: 'SesameStreet'

– enter a comment describing this class in the lower portion of this pane:

"This implements a monster who only eats cookies and is typically
very hungry"

– command-click (but, I think this should be yellow/right-click/option-click) to get a menu with an
accept option; select this to save this new class.

– Hopefully, you now see CookieMonster in the top-row-second-windowpane of the System
Browser along with Monster

Creating a class method
• Typically, we need to create access methods for a class first. Let's do that for Monster.

• Select Monster in the second browser pane

• In the third browser pane, I command-clicked (but, I think this should be yellow/right-click/option-
click) and then select "new category".

– select "new...", and create a new category access

– (select this new category in the 3rd pane, if it isn't selected already. You should see a method
template in the bottom pane, now)

CS 335 - Homework 9 p. 5

– We'd like a colour method that returns the value of the colour instance variable/data field:

colour
 "return this monster's colour"
 ^colour

– and yellow/right-click/option-click(command-click?) and accept. Enter your initials if requested.

– Hopefully, colour now appears in the fourth pane in the top row.

Adding more to the Monster class
• We also want an access method for the tummy; to add another method to the same method category, I

usually have to type on something else -- say Monster -- and then on access, and now enter a tummy
accessor method:

tummy
 "return this monster's tummy"
 ^tummy

– don't forget to accept the newly-entered method!

• Now add methods to method category access to change/set the colour and tummy instance
variables/data fields. Since the user presumably should be able to indicate what these should be set
to, these should be keyword methods of arity 2:

colour: aSymbol
 "set the monster's colour"
 colour := aSymbol.
 ^self

– Note: the parameter name aSymbol here is actually a significant style example; the Squeak
Swiki (!) notes that:

"Since Smalltalk is a "dynamically typed" language one should take care to
document clearly what kinds of objects a method expects as its arguments.

Good Smalltalk style uses typenames prefixed by "a" or "some" (e.g. "anInteger",
"someMonster") for this purpose, instead of less descriptive identifiers such as "x",
"y" or "fred".

This convention for naming arguments uses the name of the most general class of
those objects a method is willing to accept. If we don't want to make any
assumptions we can use : "someObject" or "someItem"."

– This is a CS 335 course style standard for Squeak, then.

– And now let's add a way to set a tummy.

tummy: aCollection
 "set a monster's tummy"
 tummy := aCollection.

CS 335 - Homework 9 p. 6

 ^self

• In Smalltalk, you need those means to access and set your data fields before you can really create
ways to create instances of your class...!

• But, we have done so -- so we want an initialization method category (select Monster class,
yellow/right-click/option-click(command-click?) on the 3rd pane, select "new category", select
"new...", type in initialization, and accept)

– In this initialization method category, make a method initialize:

initialize
 "create a new monster"
 self colour: #green.
 self tummy: Bag new.
 ^self

Creating a class method
• We would like one class method category. To add it, you need to select Monster in the 2nd pane, and

then click the little class button beneath the 2nd pane. Now when you yellow/right-click/option-
click(command-click?) on the 3rd pane and select "new category", you are adding a new class
method category; select instance creation for the category, and give it the following method named
new as so:

new
 "create a new monster"
 ^super new initialize

• (Note that, if you want to view or modify your instance methods for Monster, you can click on the
instance button under the 2nd pane while Monster is selected to do so.)

• And now you can TEST your new Monster class:

– Open a new Workspace

– Type in that workspace:

george := Monster new.

george inspect.

– Highlight these, and doIt -- a Monster inspection window should open, and you can inspect
your Monster instance!

More methods for Monster
• Continuing in this vein. below are additional method categories and methods for Monster. You

should add these to your Monster class.

actions "instance method category"

eat: someItem.
 self tummy add: someItem.
 ^self

CS 335 - Homework 9 p. 7

queries "instance method category"

isEmpty
 ^ self tummy isNil

Adding CookieMonster methods
• Now add these method categories and methods to the CookieMonster class.

– (Note: the idea here is to think about each line as you type it, so as to get more comfortable with Squeak
methods.)

private "instance method category"

askForCookie
 ^ FillInTheBlank request: 'Give me cookie !!! (please)'

complainAbout: anItem
 Transcript show: 'No want ', anItem printString.
 Transcript cr.
 self colour: #red.
 ^self

isCookie: anItem
" | serves as the OR operator"
 ^ ((anItem = 'cookie') | (anItem = #cookie))

actions "instance method category"

eat: aCookie "overloaded eat:!"
 super eat: aCookie.
 self colour: #green
 ^self

nag
 | item |
 [self isAwake]
 whileTrue:
 [item := self askForCookie.
 (self isCookie: item)
 ifTrue: [self eat: item]
 ifFalse: [self complainAbout: item].
 (self isFull) ifTrue: [self sleep]]
 ^self

sleep
 self state: #asleep.
 self hunger: 0.
 ^self

wakeUp
 self tummy: Bag new.
self state: #awake.
self hunger: (Random new next * 13).

CS 335 - Homework 9 p. 8

"Cookie Monsters are superstitious and never eat more than
13 cookies in one go !"
self nag
^self "?"

queries "instance method category"

isAsleep
 ^ state = #asleep

isAwake
 ^ self isAsleep not

isFull
 self isEmpty
 ifFalse: [^ self tummy size >= self hunger] ifTrue: [^false]

access "instance method category"

hunger
 ^ hunger

hunger: anIntegerNumberOfCookies
 hunger := anIntegerNumberOfCookies.
 ^self "?"

state
 ^ state

state: aSymbol
 state := aSymbol.
 ^self

initialization "instance method category"

initialize
 self state: #asleep.
 self hunger: nil.
 super initialize
 ^self

"To ensure proper initialization Monster's creation class method is also overridden."

creation "CLASS method category"

new
 ^ super new initialize

* "You will have noted that most messages are rather short.

In fact, a large proportion of them consists of a single line of code, returning (^) or assigning (:=)
some value.

This is typical for object-oriented programs and Smalltalk code in particular, since all valid
patterns of access to variables must be explicitely defined.

CS 335 - Homework 9 p. 9

In the interest of reliability many state variables should not be accessible at all from outside of an
object.

Smalltalk's approach of requiring explicit method definitions for any access to variables is
facilitated by its programming environment.

Since the browser allows rapid definition of such selectors with only a few mouse clicks,
modifying an already existing method, this is not particularly bothersome to do - and it pays in
terms of program reliability.

In a traditional listing such methods tend to clutter clutter the code, but browsers reduce the need
for such tedious documentation."

* "Note that choosing "fileOut" fom the yellow button menu attached to the class category pane of a
browser saves all such class definitions in the selected category as a text file (in the current
directory), which can be "read back" into Squeak (i.e. each definition is recompiled) from a file
list."

– (According to the Georgia Tech documentation: Exporting a class definition from Squeak is
known as performing a fileOut. Similarly, importing a class definition into Squeak is known as
performing a fileIn.)

• SO: at this point, do a fileOut of your SesameStreet class category. The resulting file should be
named SesameStreet.st

– So you will know: here is how you can open up such a saved class category:
* if you were to open up a brand-new Squeak image, and wanted to add SesameStreet to it:

* red-click (left-click) on the desktop and choose open..., and then file list...

* you will then be shown a browser window containing the contents of your directory.

* select your newly-copied-over SesameStreet.st file and yellow-click (right-click) within the file
list browser, selecting fileIn entire file.

Squeak will then import the class definition into its class library, and when you look in a System
Browser, you should see:
* class category SesameStreet at the bottom of the list in the leftmost-top pane,

* if you click on class category SesameStreet, you should see classes CookieMonster and
Monster in the second pane,

* if you click on class Monster in the second pane, you should see method categories access,
initialization, creation, and actions in the third pane,

* if you click on method category access in the third pane, you should see methods colour,
colour:, tummy, and tummy: in the fourth pane, and

* if you click on method colour: in the fourth pane, you should see the body of method colour:
in the bottom pane.

CS 335 - Homework 9 p. 10

Problem 2
Now, you will add to the Monster class.

* Add two more class variables to the Monster class: greeting and name.

* Click on the Monster class in the second System Browser pane. Its code should appear in the
bottom pane.

* Add instanceVariableNames of greeting and name (to go along with colour and tummy).

* red-click and select accept to accept these new instance variable names.

* Now we need methods for using and setting this greeting and name.

* When you click on class Monster in the second pane in a System Browser, you see its method
categories in the third pane.

* Let's add a name method to the access method category. Select access in the third pane of the
System Browser, and the bottom pane then has within it a method template. For simplicity, simply
delete all that and enter the following in that bottom pane:

name
 ^name

red-click and accept to accept this change (name should appear in the 4th pane as another access
method).

* And, add an analogous greeting method to the access method category (that simply returns the
greeting for this Monster instance).

* And, allow a Monster to change its name - add a name: method (also in the access method
category) with the following body:

name: aSymbol
 name := aSymbol.
 ^self

* And, allow a Monster to change its greeting - add a greeting: method (also in the access method
category) with an analogous body, except call its method parameter aString instead of aSymbol
(because that will be more convenient for a greeting, which will be more likely to be a phrase).

* Finally, the greeting and name should be able to be initialized.

* Click on the Monster class's method category of initialization, and to the existing initialize
method add statements using the new greeting: method to set greeting to a default value of 'Hi
there!' and using the new name: method to set name to a default value of '' (note that's two empty
quotes). Remember to separate statements within a method using periods, and remember to
accept your changes (yellow-click in the bottom pane, and select accept).

* Consider: you can write to a Transcript by sending it a show: message whose argument is, well, the

CS 335 - Homework 9 p. 11

value of what you want to show. And, you can send a newline/carriage return by sending a Transcript a
cr message.

Create a greet message for class Monster, under method category actions, that simply writes the
calling monster's greeting, followed by a newline/carriage return, to the Transcript.

* Exercise these new additions/modifications. Open up a Workspace and a Transcript. In the Workspace,
perform each of the following, yellow-clicking and selecting do it after each of the first four and
yellow-clicking and selecting print it after each of the second three (being careful to leave the printed-
out result to the right of each of those three) and selecting do it after the last one, to cause something
appropriate to appear in the Transcript:

* create a new Monster: harry := Monster new.
* change its name to #Harry: harry name: #Harry.
* change its greeting to 'Hellooo!': harry greeting: 'Hellooo!'.
* change its colour to #orange: harry colour: #orange.

* see its name: harry name.
* see its greeting: harry greeting.
* see its colour: harry colour.

* cause a greeting to be written the the Transcript:
harry greet.

Now, for good measure, in the Workspace do:

harry inspect.

* ...and yellow-click and select do it to inspect your current harry instance in that way.

* Add any additional testing that you would like to the above.

* To show that you've tried at least the steps specified above in the Workspace and Transcript, yellow-
click in the Workspace, select more..., select save contents to file..., type in the name ws2.txt and
accept.

And, in the Transcript, yellow-click in the Transcript, select more..., select save contents to file..., type
in the name ts2.txt and accept.

You should now have text file ws2.txt and ts2.txt in your working directory; submit these files as part
of Problem 2. (Again, you'll be saving a copy of your actual code later on...)

Problem 3
Above, you created Monster and CookieMonster methods, but you only tested the Monster methods.
Now test the CookieMonster methods for credit as follows:

* Open up a new Workspace and a new Transcript.

* In the Workspace... (use do it for each of these unless specified otherwise)
* assign a variable ck to a new instance of a CookieMonster.

CS 335 - Homework 9 p. 12

* Make ck's name #Cookie, and make ck's greeting 'HI! ME LIKE COOKIES'

* Send a greet message to ck (so that you'll see a greeting on the Transcript).

* Send an isAsleep message to ck, and use print it to show its value next to this message in the
Workspace;

* Send an isAwake message to ck, and use print it to show its value next to this message in
the Workspace;

* Send a wakeUp message to ck. As it nags for cookies, at least one time enter something
BESIDES a cookie (so that you'll see a complaint show up on the Transcript).

(IF you'd like - after you enter a non-cookie, send a colour message to ck BEFORE you enter
a cookie, or send an inspect message to ck, and check out ck's colour at this point...
surprised?)

You may have to enter a cookie up to 13 times --- if you'd like to reduce the maximum
number of cookies it begs for at a time to a number less than that, you may modify the
appropriate CookieMonster's method accordingly... 8-)

* Add any additional testing/demonstrations that you'd like.

* To show that you've tried at least the steps specified above in the Workspace and Transcript, yellow-
click in the Workspace, select more..., select save contents to file..., type in the name ws3.txt and
accept. Do the same thing for the Transcript, saving it as ts3.txt and accept.

You should now have text files ws3.txt and ts3.txt in your working directory; submit this file as part of
problem 3. (The code will be saved after the last problem.)

Problem 4
IF you were going to create a new class category, you could open a System Browser object, yellow-click
over the leftmost-top pane, select add item..., type in the desired new class category name, and select
accept to accept it. But you don't need to do that here, because we are going to add classes to
SesameStreet instead.

To start creating a new class, you need to select the class category it will be within. So, select the class
category SesameStreet from the leftmost-top pane; you've done it correctly if classes Monster and
CookieMonster appear in the second pane. More to our point, you should also see a class template in the
bottom pane, awaiting your entry for a new class.

Create two new classes, Frog and Grouch.
* These should each be subclasses of class Monster.
* Each should have an initialization method category with an initialize method that explicitly calls

Monster's version of the initialize method, but then gives a different greeting.

A Frog instance's greeting should be 'Hi ho'; and Grouch instance's greeting should be 'Go away'

* Test these new classes-thus-far with the following code (in a Workspace and Transcript):

| kermit oscar |
kermit := Frog new initialize.
oscar := Grouch new initialize.

CS 335 - Homework 9 p. 13

kermit name: 'Kermit the Frog'.
oscar name: 'Oscar the Grouch'.
kermit greet.
oscar greet.

* Now, let's make Monsters interact. Write a method in the Monster class that:

* Takes another Monster instance as an argument.

* Reads that monster's name.

* Greets the monster by name.

To the previous Workspace examples, add the following:

kermit greetByName: oscar.
oscar greetByName: kermit.

...you should see (in the Transcript):

Hi ho, Oscar the Grouch! I am Kermit the Frog!
Go away, Kermit the Frog! I am Oscar the Grouch!

When you are happy with these new classes, indeed run specified code above within a Workspace (and have
a Transcript open to display any greetings shown). (You may also add additional testing if you'd like.) Save
the resulting Workspace and Transcript as ws4.txt and ts4.txt, to be submitted.

Problem 5
You now have these three subclasses of class Monster. Expand on them in some interesting way.

* It needs to be significant -- adding methods at least, perhaps also adding additional classes, if
inspiration moves you. (Adding methods or capabilities to class Monster is also okay!)

* All three Monster subclasses need to be modified in some appropriate fashion, by the time you are
done; at least six additional methods need to be added to the three Monster subclasses and/or class
Monster. Include comments in your new methods (and classes, if any).

Perhaps each Monster subclass can have more capabilities; these might be more interesting
interactions, or something graphical, or even something sound-based. (Obviously you'd have to do
some research to add graphical or sound-based capabilities.)

* Make sure that all of your new code is within the SesameStreet class category.

* Open a Workspace and Transcript, and include code that tests/demonstrates your new capabilities; save
their contents as ws5.txt and ts5.txt, and submit them.

When you are done, you need to export the final version of all of your code within the SesameStreet class
category (you need to perform a fileOut). In a System Browser, click on SesameStreet in the first pane, and
yellow-click, selecting fileOut. It will note that SesameStreet.st already exists; select choose another
name, and save your code under the new file name SesameStreet2.st, and accept.

Submit your files of SesameStreet.st and SesameStreet2.st, as well as all of the saved Workspace and
Transcript files specified.

	Deadline:
	How to submit:
	Purpose:
	Important notes:
	The Problems:
	Problem 1:
	Creating a new class category
	Adding a new class to a class category
	Creating a class method
	Adding more to the Monster class
	Creating a class method
	More methods for Monster
	Adding CookieMonster methods

	Problem 2
	Problem 3
	Problem 4
	Problem 5

