
CS 335 - Homework 10 p. 1

CS 335 - Homework 10

Deadline:
Due by 11:59 pm on Friday, May 6th

How to submit:
Submit your files for this homework using ~st10/335submit on nrs-labs, with a homework
number of 10

Purpose:
to practice with some older versions of if statements; to consider a classic problem with the venerable
if-else statement; to practice with several older approaches to repetition; to consider two different
approaches to the for-statement; to comment on each other's Prolog games; to reflect on Scheme,
Prolog, and Squeak

Important notes:
• Put your answers for this homework into a file hw10.txt; make sure the file includes your name,

and precedes each answer with the problem/part number for which it is the answer.

The Problems:

Problem 1 - 20 points:
(adapted from MacLennan Exercise 2-1, p. 48)

If you look over the early-FORTRAN examples in Chapter 2 of MacLennan, you should be able to see
how FORTRAN assignment statements and basic GOTO statements were written; and in class, we
discussed its arithmetic-IF and its (added a bit later) logical-IF.

(Or, if you'd like another reference, I like this FORTRAN-IV reference page:

http://www.math-cs.gordon.edu/courses/cs323/FORTRAN/fortran.html

)

And, FORTRAN has optional automatic declaration of variables; so, for the parts below, assume that
variables S and N have been automatically declared. (For this problem, do not use any FORTRAN
features from versions of FORTRAN later than FORTRAN IV.)

CS 335 - Homework 10 p. 2

1 part a
Write a fragment of FORTRAN that uses an arithmetic-IF, assignment statements, and GOTO's to
accomplish the following:

• store 13.5 in S if N = 0

• store -5.1 in S if N > 0

• store +5.1 in S if N < 0

1 part b
Now write a fragment of FORTRAN that uses logical-IF's and assignment statements to accomplish the
same thing.

Problem 2 - 10 points
Consider that classic selection statement in many languages, the if-else statement.

Depending on the syntax, an if-else statement can be prone to a problem called the dangling else
problem. That is, consider the following "pseudocode" statement (written using absolutely atrocious
style to make a point):
if condition1 then if condition2 then statement1 else statement2

When will statement2 be executed -- when condition1 is false, or when (condition1 is
true AND condition2 is false)? That is, which if is the else statement2 paired
with?

Algol-60, Pascal, and Ada addressed the dangling else problem in three different ways. We briefly
discussed these in class, and MacLennan discusses two of these in more detail; you can find out more
detail about the third on the web, or by using the ACM Digital Library.

2 part a
Just to make sure you know -- explain how each of these languages either handled or prevented this
problem.

2 part b
Which of these three approaches do you prefer, and why?

Problem 3 - 12 points
(adapted from MacLennan Exercise 2-2, p. 48)

Assume that a variable N has been automatically declared and that a value has been read into it.

Write in FORTRAN IV a fragment of code with a leading-decision loop that doubles the value in
variable N until it is greater than 250. (If it is already greater than 250, it should not change the value in
N)

CS 335 - Homework 10 p. 3

Problem 4 - 12 pts
(adapted from MacLennan Exercise 2-10, p. 51)

Write a FORTRAN IV fragment that uses a DO-loop to compute into a variable SUM the sum of the
array elements A(1) + A(2) + ... + A(250)

Problem 5 - 12 points
Algol-60 was a language renowned for its elegance in a number of areas -- which made its less-elegant
features stand out all the more. Several of its features took the goal of generality too far, to the point of
being "cluttered with features of extreme generality and doubtful utility" (MacLennan, p. 138), or
baroque.

Algol-60's extremely general for-loop has been described as being baroque -- you can read about it in
MacLennan, on pp. 137-138.

To give you a taste of how baroque the Algol for-loop could be, determine and write out what the
following fragment of Algol-60 code would print (assuming that Print prints its argument's value on
its own line):
for i := 3 step 2 until 11,
 5, 14, 6,

 i*2 while i < 40
do
 Print i

Problem 6 - 10 points
For a more modern and different variation of a for-loop (different from the C++ for-loop, anyway),
look up a description of Python's for-loop on the web.

Assuming that a Python list can be expressed as a comma-separated list of expressions within
parentheses (for example,
(1, "dog", True)

and that:
print <expression>

...prints the value of <expression> on its own line, write an example of a Python for-loop printing
out the value of each of a list of at least seven expressions on its own line.

(Note: you can test your for-loop using Python on nrs-labs, if you like -- you can reach the Python
interpreter there by simply typing:
python

and you can use exit() or ^D to exit the interpreter when you are done.)

Problem 7 - 12 pts
Consider the Prolog games you have written. You will see them in action in class on Tuesday, May 3rd;

CS 335 - Homework 10 p. 4

those latest versions will be posted on the course Moodle site on that day as well.

Play each game at least a little, and look at its source code if you'd like; then, for each game, write
either something you liked about it or some Prolog feature used in its code that you found particularly
interesting.

It is possible that these comments may be sent to each game's creator.

Problem 8 - 12 pts
Consider Scheme, Prolog, and Squeak.

For each, write the following:

• something that you find to be easier to do in that language than in C++

• something that you find to be harder to do in that language than in C++

• something you liked (or, if more appropriate, disliked least... 8-)) about that language

• something you disliked (or, if more appropriate, liked least... 8-)) about that language

It is possible that these may be collected and posted to the course Moodle site.

	Deadline:
	How to submit:
	Purpose:
	Important notes:
	The Problems:
	Problem 1 - 20 points:
	1 part a
	1 part b

	Problem 2 - 10 points
	2 part a
	2 part b

	Problem 3 - 12 points
	Problem 4 - 12 pts
	Problem 5 - 12 points
	Problem 6 - 10 points
	Problem 7 - 12 pts
	Problem 8 - 12 pts

