
CS 335 - Week 2 Lecture 1 - January 20, 2011

Crash Intro to Formal Languages (including intro to BNF)

combined version (slides and longer definitions included within the projected notes,
and even some Greek letters and superscripts/subscripts inserted;)

references:
Sipser, "Introduction to the Theory of Computation", 2nd Edition, Thomson Course Technology, 2006

Hopcroft and Ullman, "Introduction to Automata Theory, Languages, and Computation", Addison-
Wesley, 1979 (but there is an updated edition with a 3rd author, also)

...as well as the MacLennan course text, Ch. 4

* formal languages - how we describe languages; (meta-languages)

* formally: a programming language is a set of strings (sometimes called
 sentences) over some finite alphabet of symbols, called terminals

 * the programming language is not necessarily finite, though!

* rules describe how to combine the terminals into well-formed sentences
 in the programming language - syntax

* programming languages are categorized by the complexity of these syntax
 rules

 * languages that can be defined by REGULAR EXPRESSIONS can be accepted
 by FINITE AUTOMATA
 RE - regular expressions
 FA - finite automata

 RE's are often used to describe TOKENS ("atomic" parts) of
 programming languages; (also heavily used in Perl, sed, awk,
 searches, etc.)

 BUT -- most programming languages are too complex to describe
 with RE's;

 * We'll find out that many programming languages belong to
 the language class CONTEXT-FREE LANGUAGES; (CFL's)

 ...described by CONTEXT-FREE GRAMMARS (CFG's)

 (BNF is a form of CFG...)

 * (in the interests of time, we are skipping Push-Down Automata -
 PDA's -- can be used to accept if-statements, looping statements,

 declarations)

* REGULAR EXPRESSIONS -

 * We need some terms first:

 * what is concatenation on a set of strings?

 Let  be a finite set of symbols (finite alphabet), and
 let L, L1, and L2 be sets of strings from *

 The concatenation of L1 and L2, L1L2, is the set:

 {xy | x is in L1 and y is in L2}

 * example: (modified from Sipser, p. 45)
 * let  = {a, b, ... z}
 * let A = {good, bad}
 * let B = {dog, cat}
 * AB = {gooddog, goodcat, baddog, badcat}

 * what is closure on sets of strings?

 Let L0 = {ε} (the language consisting of the empty string)
 (DIFFERENT from the empty set!!)

 L1 is defined as L concatenated with L0

 (really, just L, since any string from L concatenated
 with the empty string is that string from L...!)

 L2 is L concatenated with L1 -- L concatenated with L, essentially!
 (all strings made from concatenating 2 strings from
 L

 L3 is L concatenated with L2 -- all strings made from
 concatenating 3 strings from L

 ...

 Ln is the set of all strings made from concatenating n strings
 from L

* Kleene closure - L*

"The Kleene closure (or just closure) of L, denoted L*, is the set:

 L* =
Li

i



0
U

 * or, L* is the union of L0, L1, L2, ... L

* positive closure: L+ - L* except L0 is not part of the union;

"and the positive closure of L, denoted L+,
 is the set:"

 L+ =
Li

i



1
U

 * same as L*, except L0 is not included in the unioning of L;

* an example for A = {good, bad}

 * example: (modified from Sipser, p. 45)
 * let A, as before, be {good, bad}.

 * A* contains {ε, good, bad, goodgood, goodbad, badgood, badbad,
 goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...}

 * A+ contains { good, bad, goodgood, goodbad, badgood, badbad,
 goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...}

 * (since A does not contain ε, then A+ does not, either)

* SO... Regular Expressions - longer definitions

* define regular expressions, then;
 * "Let  be an alphabet.

 * The regular expressions over  and the sets that they denote are defined
 recursively as follows:
 1)  is a regular expression and denotes the empty set.

 2) ε is a regular expression and denotes the set {ε}.
 * [remember: this is the set consisting of the empty string --- this set has
 one element, the empty string, whereas the empty set has no elements.]

 3) For each a in , a is a regular expression and denotes the set {a}.

 4) If r and s are regular expressions denoting the language R and S,
 respectively, then:
 (r + s),
 (rs), and
 (r*)
 are regular expressions that denote the sets
 R  S,
 RS, and
 R*,
 respectively."

 EXAMPLES:

  = {0, 1}

 11 - represents the language {11}

 (0 + 1)*
 represents the closure of the set containing any words from {0}
 and any words from {1} -- the language of ALL strings

 of 0's and 1'

 (1 + 10)*
 closure of any words from {1} and any words from {10} --
 all words formed by concatenating 1 and 10;
 all strings of 0's and 1's that begin with 1
 and do not have 2 consecutive 0's;

 0*10* - the language {w | w has exactly a single 1}

* regular expressions often express tokens accepted during
 LEXICAL ANALYSIS, often the first "pass" of compiling,
 that turns the characters into tokens within the language;

CONTEXT-FREE GRAMMARS - describe CONTEXT-FREE LANGUAGES
...can describe features that have a recursive structure;

* what is a CFG?

 * finite set of VARIABLES (also called nonterminals
 or syntactic categories), EACH of which represents a language;

 * the languages represented by the variables are described
 recursively in terms of each other, and in terms of
 primitive symbols called TERMINALS

 * the rules relating variables are called PRODUCTIONS
 (sometimes called substitution rules)

 * one variable is designated as the START variable --
 style rule: this should be the variable on the LHS
 of the topmost/first production;

S -> 0A1
A -> 1A0
A -> B
B -> 00

S - start symbol
the variables here are S, A, B
the TERMINALS here are 0, 1
these are 4 productions

* you are allowed, if a variable appears on the LHS of more than 1
 production, to write them as 1 production with |:

A -> 1A0 | B

* derivation: sequence of substitutions to obtain a string
 (MUST start from the start symbol!)
 (use => to separate "steps" in a derivation)

S => 0A1 => 01A01 => 01B01 => 010001

 ...this is essentially a proof that 010001 is a string in this language
 (CFG's are language GENERATORS...)

* while linguists were studying CFG's, Backus and Naur came up with
 BNF to describe Algol-60 --

 BNF is CFG notation with minor changes in format, and some shorthand

* so: now let's talk about BNF

 * CFG's variables are written in angle brackets in BNF

 <decimal fraction>
 <unsigned integer>

 * productions written using ::= instead of ->
 (can be read as "is defined as")

 * can use | to write to "combine" productions for the
 same variable;

<integer> ::= +<unsigned integer> | -<unsigned integer>
 | <unsigned integer>

 * can use recursion to express sequences;

<unsigned integer> ::= <digit> | <unsigned integer><digit>

* see BNF for an Algol-60 (hardware representation) number

adapted from MacLennan, Principles of Programming Languages, 3rd Edition,
Chapter 4, Figure 4.1, p. 152

<number> ::= +<unsigned number>
 | -<unsigned number>

 | <unsigned number>

<unsigned number> ::= <decimal number>
 | <exponent part>

 | <decimal number> <exponent part>

<decimal number> ::= <unsigned integer>
 | <decimal fraction>
 | <unsigned integer> <decimal fraction>

<exponent part> ::= E<integer>

<unsigned integer> ::= <digit>
 | <unsigned integer> <digit>

<decimal fraction> ::= .<unsigned integer>

<integer> ::= +<unsigned integer>
 | -<unsigned integer>
 | <unsigned integer>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

* examples of derivations of a number using this BNF

<number> => <unsigned number>
 => <decimal number>
 => <unsigned integer>
 => <digit>
 => 3

<number> => <unsigned number>
 => <decimal number>
 => <unsigned integer>
 => <unsigned integer><digit>
 => <digit><digit>
 => 3<digit>
 => 34

* derivation tree - (parse tree)
 * write the derivation as a tree, instead;

 * the start variable is the root of this tree;

 * each substitution (based on a BNF production/rule) adds a level of
 child/children beneath a variable node,
 such that the "children" of that variable's node are what you are
 substituting for that variable;

 * when you are done, you'll see that the internal nodes of the resulting tree
 are all variables, and the leaves are all terminals;

 * you "read" the string you've just shown is in that language by reading the
 leaves left-to-right;

 parse tree for a derivation of 34, showing it is a "legal" number:

 <number>
 |
 <unsigned number>
 |
 <decimal number>
 |
 <unsigned integer>
 | \
 <unsigned integer> <digit>
 | |
 <digit> 4
 |
 3

 34 is an Algol <number>

 * sometimes a single parse tree will correspond to several derivations;
 consider the above example: does it really matter whether you substitute
 the first <digit> with 3 first, or the second <digit> with 4 first?

stopping here;

