
CS 335 - Week 2 Lecture 1 - January 20, 2011

Crash Intro to Formal Languages (including intro to BNF)

combined version (slides and longer definitions included within the projected notes,
and even some Greek letters and superscripts/subscripts inserted;)

references:
Sipser, "Introduction to the Theory of Computation", 2nd Edition, Thomson Course Technology, 2006

Hopcroft and Ullman, "Introduction to Automata Theory, Languages, and Computation", Addison-
Wesley, 1979 (but there is an updated edition with a 3rd author, also)

...as well as the MacLennan course text, Ch. 4

*   formal languages - how we describe languages; (meta-languages)

*   formally: a programming language is a set of strings (sometimes called
    sentences) over some finite alphabet of symbols, called terminals

    *   the programming language is not necessarily finite, though!

*   rules describe how to combine the terminals into well-formed sentences
    in the programming language - syntax

*   programming languages are categorized by the complexity of these syntax
    rules

    *   languages that can be defined by REGULAR EXPRESSIONS can be accepted
        by FINITE AUTOMATA
        RE - regular expressions
        FA - finite automata

        RE's are often used to describe TOKENS ("atomic" parts) of
        programming languages; (also heavily used in Perl, sed, awk,
        searches, etc.)

        BUT -- most programming languages are too complex to describe
  with RE's;

    *   We'll find out that many programming languages belong to
        the language class CONTEXT-FREE LANGUAGES; (CFL's)

        ...described by CONTEXT-FREE GRAMMARS (CFG's)

  (BNF is a form of CFG...)

    *   (in the interests of time, we are skipping Push-Down Automata -
        PDA's -- can be used to accept if-statements, looping statements,

  declarations)

*   REGULAR EXPRESSIONS -

    *   We need some terms first:



    *   what is concatenation on a set of strings?

        Let  be a finite set of symbols (finite alphabet), and
        let L, L1, and L2 be sets of strings from *

        The concatenation of L1 and L2, L1L2, is the set:

        {xy | x is in L1 and y is in L2}

 *   example:   (modified from Sipser, p. 45) 
                *   let  = {a, b, ... z}
                *   let A = {good, bad}
                *   let B = {dog, cat}
                *   AB = {gooddog, goodcat, baddog, badcat}

    *   what is closure on sets of strings?

        Let L0 = {ε}  (the language consisting of the empty string)
               (DIFFERENT from the empty set!!)

        L1 is defined as L concatenated with L0

                      (really, just L, since any string from L concatenated
                       with the empty string is that string from L...!)

        L2 is L concatenated with L1 -- L concatenated with L, essentially!
                      (all strings made from concatenating 2 strings from
                      L

        L3 is L concatenated with L2 -- all strings made from 
                     concatenating 3 strings from L

     ...

        Ln is the set of all strings made from concatenating n strings
                     from L
         
*   Kleene closure - L*

"The Kleene closure (or just closure) of L, denoted L*, is the set:

                L* = 
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                *   or, L* is the union of L0, L1, L2, ... L

     
*   positive closure: L+ - L* except L0 is not part of the union;

"and the positive closure of L, denoted L+, 
   is the set:"

                L+ = 
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                *   same as L*, except L0 is not included in the unioning of L;

*   an example for A = {good, bad}



 *   example: (modified from Sipser, p. 45) 
                *   let A, as before, be {good, bad}.

                *   A* contains {ε, good, bad, goodgood, goodbad, badgood, badbad, 
                                         goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...}

                *   A+ contains { good, bad, goodgood, goodbad, badgood, badbad,
                                         goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...}

                        *   (since A does not contain ε, then A+ does not, either)

*   SO... Regular Expressions - longer definitions

*   define regular expressions, then;
        *   "Let  be an alphabet.

        *   The regular expressions over  and the sets that they denote are defined 
        recursively as follows:
                1)    is a regular expression and denotes the empty set.

                2)   ε is a regular expression and denotes the set {ε}.
                        *   [remember: this is the set consisting of the empty string --- this set has 
                        one element, the empty string, whereas the empty set has no elements.]

                3)   For each a in , a is a regular expression and denotes the set {a}.

                4)   If r and s are regular expressions denoting the language R and S, 
                respectively, then:
                        (r + s),
                        (rs), and
                        (r*)
                are regular expressions that denote the sets
                        R  S,
                        RS, and
                        R*,
                respectively."

    EXAMPLES:

     = {0, 1}

    11 - represents the language {11}

    (0 + 1)*
    represents the closure of the set containing any words from {0}
               and any words from {1} -- the language of ALL strings



               of 0's and 1'

    (1 + 10)* 
    closure of any words from {1} and any words from {10} --
    all words formed by concatenating 1 and 10;
    all strings of 0's and 1's that begin with 1
        and do not have 2 consecutive 0's;

    0*10* - the language {w | w has exactly a single 1}

*   regular expressions often express tokens accepted during
    LEXICAL ANALYSIS, often the first "pass" of compiling,
    that turns the characters into tokens within the language;

CONTEXT-FREE GRAMMARS - describe CONTEXT-FREE LANGUAGES
...can describe features that have a recursive structure;

*   what is a CFG?

    *   finite set of VARIABLES (also called nonterminals
        or syntactic categories), EACH of which represents a language;

    *   the languages represented by the variables are described
        recursively in terms of each other, and in terms of
        primitive symbols called TERMINALS

    *   the rules relating variables are called PRODUCTIONS
        (sometimes called substitution rules)

    *   one variable is designated as the START variable --
        style rule: this should be the variable on the LHS
            of the topmost/first production;

S -> 0A1
A -> 1A0
A -> B
B -> 00

S - start symbol
the variables here are S, A, B
the TERMINALS here are 0, 1      
these are 4 productions

*   you are allowed, if a variable appears on the LHS of more than 1 
    production, to write them as 1 production with |:

A -> 1A0 | B

*   derivation: sequence of substitutions to obtain a string
    (MUST start from the start symbol!)
    (use => to separate "steps" in a derivation)

S => 0A1 => 01A01 => 01B01 => 010001

     ...this is essentially a proof that 010001 is a string in this language
     (CFG's are language GENERATORS...)

*   while linguists were studying CFG's, Backus and Naur came up with
    BNF to describe Algol-60 --



    BNF is CFG notation with minor changes in format, and some shorthand

*   so: now let's talk about BNF

    *   CFG's variables are written in angle brackets in BNF

        <decimal fraction>
        <unsigned integer>

    *   productions written using ::= instead of ->
        (can be read as "is defined as")

    *   can use | to write to "combine" productions for the
        same variable;

<integer> ::= +<unsigned integer> | -<unsigned integer> 
              | <unsigned integer>

    *   can use recursion to express sequences;

<unsigned integer> ::= <digit> | <unsigned integer><digit>

*   see BNF for an Algol-60 (hardware representation) number

adapted from MacLennan, Principles of Programming Languages, 3rd Edition, 
Chapter 4, Figure 4.1, p. 152

<number> ::=   +<unsigned number> 
             | -<unsigned number>

   | <unsigned number>

<unsigned number> ::=   <decimal number>
  | <exponent part>

       | <decimal number> <exponent part>

<decimal number> ::=   <unsigned integer>
                     | <decimal fraction>
                     | <unsigned integer> <decimal fraction>

<exponent part> ::= E<integer>

<unsigned integer> ::= <digit>
                       | <unsigned integer> <digit>

<decimal fraction> ::=  .<unsigned integer>

<integer> ::=    +<unsigned integer> 
              |  -<unsigned integer>
              |  <unsigned integer>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

*   examples of derivations of a number using this BNF



<number> => <unsigned number>
         => <decimal number>
         => <unsigned integer>
         => <digit>
         => 3

<number> => <unsigned number>
         => <decimal number>
         => <unsigned integer>
         => <unsigned integer><digit>
         => <digit><digit>
         => 3<digit>
         => 34

*   derivation tree - (parse tree) 
    *   write the derivation as a tree, instead;

    *   the start variable is the root of this tree;

    *   each substitution (based on a BNF production/rule) adds a level of 
        child/children beneath a variable node,
        such that the "children" of that variable's node are what you are 
        substituting for that variable;

    *   when you are done, you'll see that the internal nodes of the resulting tree 
        are all variables, and the leaves are all terminals;

    *   you "read" the string you've just shown is in that language by reading the 
        leaves left-to-right;

    parse tree for a derivation of 34, showing it is a "legal" number:

        <number>
          |
        <unsigned number>
           | 
        <decimal number>
           |
          <unsigned integer>
           |                \
        <unsigned integer>  <digit> 
          |                  |
        <digit>              4
          |
          3

      34 is an Algol <number>

   *   sometimes a single parse tree will correspond to several derivations;
       consider the above example: does it really matter whether you substitute
       the first <digit> with 3 first, or the second <digit> with 4 first?

stopping here;


