
names
(source: Louden, "Programming Languages,
Principles and Practices", 2nd Edition, Ch. 5,
pp. 125-134)

!p. 126: "A fundamental abstraction
mechanism in a programming language is the
use of names, or identifiers, to denote
language entities or constructs."

!"In most languages, variables, ...
[subroutines], and constants can have names
assigned by the programmer."

!"A fundamental step in describing the
semantics of a language is to describe the
conventions that determine the meaning of
each name used in a program."

location and value
(source: Louden, Ch. 5, pp. 125-134)

!other important concepts to understand,
related to but separate from names:
location and value

" value: any storable quantity

" location: a place where a value can be
stored

a name's meaning
(source: Louden, Ch. 5, pp. 125-134)

! p. 127: "The meaning of a name is
determined by the properties, or attributes,
associated with the name."

! what attributes? These can vary by kind of
name and by programming language, but
some examples include:

" data type

" value

" location

examples of name attributes:
example 1

(source: Louden, Ch. 5, pp. 125-134)

! C language example:

const int MAGIC = 5;

! associates with the name MAGIC the
following attributes:

" a data type attribute of 'integer constant'

" a value attribute of 5

" (note: in C, the 'constant' attribute is part
of the data type -- in other languages, this
might not be the case...)

" (...another example of different languages
including different aspects as part of the
data type: early Pascal considered an
array's size to be part of its type)

examples of name attributes:
example 2

(source: Louden, Ch. 5, pp. 125-134)

! another C language example:

int quantity;
! associates with the name quantity the

following attributes:

" an attribute 'variable'

" a data type attribute of 'integer'

examples of name attributes:
example 3

(source: Louden, Ch. 5, pp. 125-134)

! yet another C language example:

double functy(int value)
{
 return (value * 2.0)/7.0;
}
! associates with the name functy the

following attributes:

" an attribute 'function'

" the number, names, and data types of its
parameters (here, one parameter with
name value and data type 'integer')

" the body of code to be executed when
functy is called (here, the return
statement with its computation)

examples of name attributes:
examples 4, 5

(source: Louden, Ch. 5, pp. 125-134)

! Are declarations the only language constructs
that can associate attributes to names? NO;

! for example: (still in C)

x = 2;

" this assignment statement associates the
new attribute 'value 2' to the variable x

int* y;
y = new int;

" y is a pointer variable

" the assignment statement allocates
memory for an integer variable -- it
associates a location attribute to it -- as
well as associates a new value attribute to
y

binding
(source: Louden, Ch. 5, pp. 125-134)

! p. 128: "The process of associating an
attribute to a name is called binding."

! "An attribute can be classified according to
the time during the translation/execution
process when it is computed and bound to a
name.

" ...called the binding time of the attribute."

! two broad categories of binding times:

" static binding: "occurs prior to execution"

" dynamic binding: "occurs during
execution"

! static attribute: able to be bound statically;

! dynamic attribute: must be bound
dynamically;

binding
(source: Louden, Ch. 5, pp. 125-134)

! p. 128: "The process of associating an
attribute to a name is called binding."

! "An attribute can be classified according to
the time during the translation/execution
process when it is computed and bound to a
name.

" ...called the binding time of the attribute."

! two broad categories of binding times:

" static binding: "occurs prior to execution"

" dynamic binding: "occurs during
execution"

! static attribute: able to be bound statically;

! dynamic attribute: must be bound
dynamically;

which attributes are which?
(source: Louden, Ch. 5, pp. 125-134)

! p. 128: "Languages differ
SUBSTANTIALLY in which attributes are
bound statically and which are bound
dynamically"

! binding times may depend on the kind of
translator being used, too;

! for example:

" languages that support the functional
programming model often have more
dynamic binding

" interpreters perform most bindings
dynamically

" compilers perform more bindings statically

which attributes are which?
part 2

(source: Louden, Ch. 5, pp. 125-134)

! "To make the discussion of attributes and
binding independent of such translator
issues,

" we usually refer to the binding time of the
attribute as the earliest time that the
language rules permit the attribute to be
bound."

which attributes are which?
examples

(source: Louden, Ch. 5, pp. 125-134)

const int MAGIC = 2;

! the value 2 is bound statically to the name
MAGIC

int val;

! the data type 'integer' is bound statically to
the name val

val = 2;

! binds the value 2 to val dynamically when
the assignment statement is executed

/* C++ */ y = new int;

! dynamically binds a storage location to *y
and assigns that location as the value of y

ASIDE: stages of execution
(source: MacLennan, Ch. 2, pp. 43-44)

...when a compiler is your translator...

! the stages for early FORTRAN (still
frequently used):

1. Compilation

2. Linking

3. Loading

4. Execution

! compilation: translates individual statements
into relocatable object code

! linking: incorporates references to external,
already-compiled subprograms (e.g. libraries)

! loading: places (or loads) the program into
memory -- converting it from relocatable to
absolute format

ASIDE: phases of compilation
(sources: MacLennan, Ch. 2, pp. 43-44, Scott,
Ch.1, pp. 27-28 and 33-34)

! the phases of compilation for early
FORTRAN (still frequently used):

1. Lexical and syntax analysis

2. Optimization

3. Code synthesis

! lexical analysis (scanning): read characters
and group them into tokens

! syntax analysis (parsing): organizes tokens
into a parse tree (based on, often, a CFG)

! optimization: transforming the result so far
to make it more efficient

! code synthesis: put together the parts of the
object code instructions in relocatable format

subcategories of static binding
(source: Louden, Ch. 5, pp. 128-129)

A static attribute may be bound...

! ...when the language is defined (language
definition time)

! ...when the language is implemented
(language implementation time)

! ...during parsing (translation time or
compile time)

! ...during the linking of the program with
libraries (link time)

! ...during the loading of the program for
execution (load time)

subcategories of static binding
- examples, part 1

(source: Louden, Ch. 5, pp. 128-129)

! ...of language definition time binding:

" predefined identifiers that have their
meaning (and thus their attributes)
specified by the language definition --
such as when the two type boolean
values are specified as true and false

! ...of language implementation time
binding:

" when the range of the integer type is
determined by the implementation;

! ...of compile time binding:

" in const int n = 2;
can't all of that be bound at compile time?

subcategories of static binding
- examples, part 2

(source: Louden, Ch. 5, pp. 128-129)

! ...of link time binding:

" "...the body of an externally-defined
function will not be bound until link time"

! ...of load time binding:

" "...and the location of a global variable is
bound at load time, since its location does
not change during the execution of the
program."

dynamic binding - examples
(source: Louden, Ch. 5, pp. 128-129)

! methods called in Java or virtual calls in C++

! types of Prolog or Scheme variables

! bindings of values to variables...! 8-)

tradeoffs: earlier vs. later
binding times

(source: Louden, Ch. 5, pp. 128-129, and Scott,
Ch. 3, p. 113)

! binding times definitely impact the design
and implementation of programming
languages;

! IN GENERAL, early binding times are
associated with more efficiency

! IN GENERAL, later binding times are
associated with more flexibility

scope of a binding
" (Louden, p. 134) the scope of a binding is

"the region of the program over which the
binding is maintained"

" static scoping: (Scott, p. 123) follows the
structure of the code as it appears in written
form;

! with this, don't have to consider the flow
of control at run time to determine a
name's scope;

" dynamic scoping: (Scott, p. 139) "the
bindings between names and objects depend
on the flow of control at run time, and in
particular on the order in which subroutines
are called."

! the 'current' binding for a given name is
the one encountered most recently during
execution, and not yet destroyed by
returning from its scope"

