
Prolog - introductory comments
[source: J. R. Fisher's tutorial,
www.csupomona.edu/~jrfisher/www/prolog_tutorial]

! a logical and declarative programming language

! short for PROgramming in LOGic

! its heritage: 1960's and 1970's theorem-prover and
automated-deduction research

! its inference mechanism is based upon Robinson's resolution
principle (1965) together with mechanisms for extracting
answers proposed by Green (1968).

! the "first" Prolog was "Marseille Prolog" based on work by
Colmerauer (1970).

what is declarative programming?
[source: Wikipedia, "Declarative Programming",
http://en.wikipedia.org/wiki/Declarative_programming]

! in declarative programming, you express "the logic of a
computation without describing its control flow";

! ...that is, you describe "what the program should accomplish,
rather than describing how to go about accomplishing it";

! ("this is in contrast with imperative programming, which
requires an explicitly provided algorithm")

what is logic programming?
[source: Wikipedia, "Logic Programming",
http://en.wikipedia.org/wiki/Logic_programming]

! "in its broadest sense ... [it is] the use of mathematical logic
for computer programming."

! "in the narrower sense in which it is more commonly
understood, [it] is the use of logic as both a declarative and
procedural representation language."

! "it is based upon the fact that a backwards reasoning
theorem-prover applied to declarative sentences in the form
of implications [can treat] the implications as goal-reduction
procedures"

! ...as we'll see in Prolog;

uses of Prolog
[source: Wikipedia,
http://en.wikipedia.org/wiki/Prolog]

! designed for natural language processing

! has been used in a variety of other areas as
well, including:

" theorem proving

" expert systems

" games

" automated answering systems

" ontologies

" sophisticated control systems

! "...modern Prolog environments support
creation of grgraphical user interfaces, as
well as administrative and networked
applications."

SWI-Prolog
! the version of Prolog we will be using in this course

! available for free from http://www.swi-prolog.org/

! has versions for Windows, Mac, Linux

! interesting buzzwords from its installation window:

" "...an open source ISO/Edinburgh-style Prolog compiler
including modules, ... libraries, garbage-collector,...C/C++-
interface, multiple threads, GNU-readline interface,
coroutining, constraint programming, global variables,
very fast compiler. Including packages clib (Unix process
control, sockets...), cpp (C++ interface), sgml (reading
XML...), ...ODBC interface & XPCE (Graphics UI toolkit,
integrated editor (Emacs-clone) and graphical debugger)."

SWI-Prolog - starting and stopping
! command-line interface

! (installed in /opt/local/bin when I installed on Mac
OS X in Spring 2010)

! ...since that's in my path, then typing: swipl

...in a Terminal window starts it up;

! According to the SWI-Prolog manual, for Windows:

" "Opening a .pl file will cause swipl-win.exe to
start, change directory to the directory in which the file-to-
open resides and load this file."

! to quit: type halt. at the prompt...

SWI-Prolog - example 1 (2 pgs)
Macintosh-194:~ smtuttle$ swipl
% library(swi_hooks) compiled into
pce_swi_hooks 0.00 sec, 3,688 bytes

Welcome to SWI-Prolog (Multi-threaded, 64
bits, Version 5.8.3)

Copyright (c) 1990-2009 University of
Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO
WARRANTY. This is free software,

and you are welcome to redistribute it
under certain conditions.

Please visit http://www.swi-prolog.org for
details.

For help, use ?- help(Topic). or ?-
apropos(Word).

?- halt.
Macintosh-194:~ smtuttle$

Logic Programming Concepts - part 1
[source: Scott, "Programming Language Pragmatics III", Ch.
11, p. 546]

! "Logic programming systems allow the programmer to state
a collection of axioms from which theorems can be proven."

! "The user of a logic program states a theorem, or goal, and
the language implementation attempts to find a collection of
axioms and inference steps (including choices of values for
variables) that together imply that goal."

Logic Programming Concepts - part 2
[source: Scott, Ch. 11, p. 546]

! "In almost all logic languages [including Prolog], axioms are
written in a standard form known as a Horn clause.

" A Horn clause consists of a head, or consequent term H,
and a body consisting of terms Bi:

H <-- B1, B2, ..., Bn

" The semantics of this statement are that when the Bi are all
true, we can deduce that H is true as well.

" When reading aloud, we say, "H, if B1, B2, ..., and Bn."

! Horn clauses can be used to capture most, but not all, logical
statements."

Resolution
[source: Scott, Ch. 11, p. 546]

! "...to derive new statements, a logic
programming system combines existing
statements, canceling like terms, through a
process known as resolution."

! EXAMPLE:

" If we know that A and B imply C,

" and that C implies D,

" we can deduce that A and B imply D:

C <-- A, B

D <-- C

D <-- A, B

Unification
[source: Scott, Ch. 11, p. 546]

! To add power to this, "In general, terms like
A, B, C, and D may consist not only of
constants ("Arcata is rainy"), but also of
predicates applied to atoms or to variables:

rainy(Rochester),
rainy(Arcata), rainy(X)

! During resolution, free variables may acquire
values through unification with expressions
in matching terms

flowery(X) <-- rainy(X)

rainy(Arcata)

flowery(Arcata)

Prolog specifics, part 1
[source: Scott, Ch. 11, pp. 547-548]

! "...a Prolog interpreter runs in the context of
a database of clauses (Horn clauses) that
are assumed to be true."

! "Each clause is composed of terms, which
may be constants, variables, or structures."

" "A constant is either an atom or a
number."

" A structure can be thought of as either a
logical predicate or a data structure."

Prolog specifics: Atoms
[source: Scott, Ch. 11, pp. 547-548]

! "Atoms in Prolog are similar to symbols in
Lisp.

! "lexically, an atom looks like:

" an identifier beginning with a lowercase
letter,

" a sequence of punctuation characters,

" or a quoted character string

! Examples:

foo

my_Const

+

'Hi, Mom'

Prolog specifics: Numbers
[source: Scott, Ch. 11, pp. 547-548]

! "Numbers resemble the integers and floating
point constants of other programming
languages"

! Examples:

13
28.007

Prolog specifics: Variables
[source: Scott, Ch. 11, pp. 547-548]

! "A variable looks like an identifier
beginning with an UPPERCASE letter:

Foo My_var X

" Variables can take be instantiated to (i.e.,
can take on) arbitrary values at run time as
a result of unification.

" The scope of every variable is limited to
the clause in which it appears.

" There are no declarations.

" As in Lisp, type checking occurs only
when a program attempts to use a variable
in a particular way at run time.

Prolog specifics: Structures
[source: Scott, Ch. 11, pp. 547-548]

! "Structures consist of an atom called the functor and a list
of arguments:

rainy(arcata)

teaches(tuttle, cs335)

bin_tree(foo, bin_tree(bar, arc))

" Prolog requires the opening parenthesis to come
IMMEDIATELY after the functor, with NO intervening
space;

" Arguments can be arbitrary terms: constants, variables, or
(nested) structures."

Prolog specifics: Structures (cont'd)
[source: Scott, Ch. 11, pp. 547-548]

! "Internally, a Prolog implementation can represent a structure
using Lisp-like cons-cells;

! CONCEPTUALLY, the programmer may prefer to think of
certain structures (e.g., rainy) as logical predicates.

" We use the term "predicate" to refer to the combination of
a functor and an "arity" (number of arguments.

" The predicate rainy has arity 1.

" The predicate teaches has arity 2."

Clauses in a Prolog database
[source: Scott, Ch. 11, pp. 547-548]

! The clauses in a Prolog database can be
classified as facts or rules, each of which
ends with a PERIOD.

! A fact is a Horn clause without a right-hand
side.

" It looks like a single term (the implication
symbol is implicit):

rainy(arcata).

! A rule has a RHS:

snowy(X) :- rainy(X), cold(X).

" The token :- is the implication symbol;

" The comma indicates "and"

!

Clauses, continued
! Variables that appear in the head of a Horn

clause are universally quantified:

" for all X, X is snowy if X is rainy and X is
cold.

! can also "...write a clause with an empty
LEFT-hand-side. Such a clause is called a
query, or a goal.

" Queries do NOT appear in Prolog
programs.

" Rather, one builds a database of facts and
rules,

" and then initiates execution by giving the
Prolog interpreter (or the compiled Prolog
program) a query to be answered (i.e., a
goal to be proven)

