Prolog - introductory comments

[source: J. R. Fisher's tutorial,
www.csupomona.edu/~jrfisher/www/prolog_tutorial |

a logical and declarative programming language
short for PROgramming in LOGic

its heritage: 1960's and 1970's theorem-prover and
automated-deduction research

its inference mechanism 1s based upon Robinson's resolution
principle (1965) together with mechanisms for extracting
answers proposed by Green (1968).

the "first" Prolog was "Marseille Prolog" based on work by
Colmerauer (1970).



what is declarative programming?

[source: Wikipedia, "Declarative Programming",
http://en.wikipedia.org/wiki/Declarative programming |

* 1n declarative programming, you express "the /ogic of a
computation without describing its control flow";

e ..that1s, you describe "what the program should accomplish,
rather than describing #ow to go about accomplishing 1t";

e ("this 1s 1n contrast with imperative programming, which
requires an explicitly provided algorithm")



what is logic programming?
[source: Wikipedia, "Logic Programming",
http://en.wikipedia.org/wiki/LLogic_programming |

* "in 1ts broadest sense ... [t 1s] the use of mathematical logic
for computer programming."

* "in the narrower sense in which it is more commonly
understood, [1t] 1s the use of logic as both a declarative and
procedural representation language."

* "1t 1s based upon the fact that a backwards reasoning
theorem-prover applied to declarative sentences in the form
of implications [can treat] the implications as goal-reduction
procedures"

e ...as we'll see in Prolog;



uses of Prolog

[source: Wikipedia,
http://en.wikipedia.org/wiki/Prolog]

* designed for natural language processing

* has been used i1n a variety of other areas as
well, including:

— theorem proving

— expert systems

— games

— automated answering systems
— ontologies

— sophisticated control systems

e "...modern Prolog environments support
creation of grgraphical user interfaces, as
well as administrative and networked
applications."



SWIi-Prolog

the version of Prolog we will be using in this course

available for free from http://www.swi-prolog.org/

has versions for Windows, Mac, Linux
interesting buzzwords from its installation window:

— "...an open source ISO/Edinburgh-style Prolog compiler
including modules, ... libraries, garbage-collector,...C/C++-
interface, multiple threads, GNU-readline interface,
coroutining, constraint programming, global variables,
very fast compiler. Including packages clib (Unix process
control, sockets...), cpp (C++ mterface), sgml (reading
XML...), ...ODBC interface & XPCE (Graphics Ul toolkit,
integrated editor (Emacs-clone) and graphical debugger)."



SWI-Prolog - starting and stopping

command-line interface

(installed in /opt/local/bin when I installed on Mac
OS X 1n Spring 2010)

...since that's 1n my path, then typing: swipl
...In a Terminal window starts it up;
According to the SWI-Prolog manual, for Windows:

— "Opening a .pl file will cause swipl-win.exe to
start, change directory to the directory in which the file-to-
open resides and load this file."

to quit: type halt. at the prompt...



SWI-Prolog - example 1 (2 pgs)
Macintosh-194:~ smtuttle$ swipl

©)

5 library(swi hooks) compiled into
pce swi hooks 0.00 sec, 3,088 bytes

Welcome to SWI-Prolog (Multi-threaded, 64
bits, Version 5.8.3)

Copyright (c) 1990-2009 University of
Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO
WARRANTY. This 1s free software,

and you are welcome to redistribute 1t
under certaln conditions.



Please visit http://www.swi-prolog.org for
details.

For help, use ?- help(Topic). or 7?-
apropos (Word) .

?— halt.
Macintosh-194:~ smtuttleS



Logic Programming Concepts - part 1
[source: Scott, "Programming Language Pragmatics 111", Ch.
11, p. 546]

* "Logic programming systems allow the programmer to state
a collection of axioms from which theorems can be proven.'

* "The user of a logic program states a theorem, or goal, and
the language implementation attempts to find a collection of
axioms and inference steps (including choices of values for
variables) that together imply that goal."



Logic Programming Concepts - part 2
[source: Scott, Ch. 11, p. 546]

* "In almost all logic languages [including Prolog], axioms are
written 1n a standard form known as a Horn clause.

— A Horn clause consists of a head, or consequent term /,
and a body consisting of terms B;:

H<--Bj, B>, ..., By

— The semantics of this statement are that when the B; are all
true, we can deduce that H is true as well.

— When reading aloud, we say, "H, if B, B2, ..., and By."

* Horn clauses can be used to capture most, but not all, logical
statements."



Resolution
[source: Scott, Ch. 11, p. 546]

* "...to derive new statements, a logic

programming system combines existing
statements, canceling like terms, through a
process known as resolution."

« EXAMPLE:
— If we know that A and B imply C,
— and that C implies D,
— we can deduce that A and B imply D:
C<--A,B
D<--C



Unification
[source: Scott, Ch. 11, p. 546]

* To add power to this, "In general, terms like
A, B, C, and D may consist not only of
constants ("Arcata 1s rainy"), but also of
predicates applied to atoms or to variables:

rainy (Rochester),
rainy (Arcata), rainy (X)

* During resolution, free variables may acquire
values through unification with expressions
in matching terms

flowery (X) <-- rainy (X)

rainy (Arcata)

flowery (Arcata)



Prolog specifics, part 1
[source: Scott, Ch. 11, pp. 547-548]

« "...a Prolog interpreter runs in the context of
a database of clauses (Horn clauses) that
are assumed to be true."

e "Each clause 1s composed of terms, which
may be constants, variables, or structures.'

— "A constant 1s either an atom or a
number."

— A structure can be thought of as either a
logical predicate or a data structure."



Prolog specifics: Atoms
[source: Scott, Ch. 11, pp. 547-548]

* "Atoms in Prolog are similar to symbols 1n
Lisp.

* "lexically, an atom looks like:

— an 1dentifier beginning with a lowercase
letter,

— a sequence of punctuation characters,
— or a quoted character string
* Examples:
foo

my Const

_I_

'"Hi, Mom'



Prolog specifics: Numbers
[source: Scott, Ch. 11, pp. 547-548]

* "Numbers resemble the integers and floating
point constants of other programming
languages"

* Examples:
13
28.007



Prolog specifics: Variables
[source: Scott, Ch. 11, pp. 547-548]

* "A variable looks like an 1dentifier
beginning with an UPPERCASE letter:

Foo My wvar X

— Variables can take be instantiated to (1.e.,
can take on) arbitrary values at run time as
a result of unification.

— The scope of every variable 1s limited to
the clause 1n which 1t appears.

— There are no declarations.

— As 1n Lisp, type checking occurs only
when a program attempts to use a variable
in a particular way at run time.



Prolog specifics: Structures
[source: Scott, Ch. 11, pp. 547-548]

e "Structures consist of an atom called the functor and a list
of arguments:

rainy (arcata)
teaches (tuttle, c¢s335)
bin tree(foo, bin tree(bar, arc))

— Prolog requires the opening parenthesis to come
IMMEDIATELY after the functor, with NO intervening
space;

— Arguments can be arbitrary terms: constants, variables, or
(nested) structures."



Prolog specifics: Structures (cont'd)
[source: Scott, Ch. 11, pp. 547-548]

* "Internally, a Prolog implementation can represent a structure
using Lisp-like cons-cells;

* CONCEPTUALLY, the programmer may prefer to think of
certain structures (e.g., rainy) as logical predicates.

— We use the term "predicate"” to refer to the combination of
a functor and an "arity" (number of arguments.

— The predicate rainy has arity 1.

— The predicate teaches has arity 2."



Clauses in a Prolog database
[source: Scott, Ch. 11, pp. 547-548]

* The clauses 1n a Prolog database can be

classified as facts or rules, each of which
ends with a PERIOD.

* Afactis a Horn clause without a right-hand
side.

— It looks like a single term (the implication
symbol 1s implicit):

rainy (arcata) .
* Arule has a RHS:
snowy (X) :—- rainy (X), cold(X).
— The token : - 1s the implication symbol;

— The comma i1ndicates "and"



Clauses, continued

* Variables that appear 1n the head of a Horn
clause are universally quantified:

— for all X, X 1s snowy if X is rainy and X 1s
cold.

* can also "...write a clause with an empty

LEFT-hand-side. Such a clause 1s called a
query, or a goal.

— Queries do NOT appear in Prolog
programes.

— Rather, one builds a database of facts and
rules,

— and then 1nitiates execution by giving the
Prolog interpreter (or the compiled Prolog
program) a query to be answered (i.e., a
goal to be proven)



