
Prolog - reminders, p. 1
[source: Scott, Ch. 11, pp. 547-548]

! "...a Prolog interpreter runs in the context of
a database of clauses (Horn clauses) that
are assumed to be true."

" sometimes this is called its knowledge
base

! Terms may be constants, variables, or
structures

! A constant is an atom or a number

" foo my_Const + 'Hi' -37.5

! A variable begins with an uppercase letter

" Foo My_var X

! A structure can be considered as either a
logical predicate or a data structure

Prolog - reminders, p. 2
[source: Scott, Ch. 11, pp. 547-548]

! "Structures consist of an atom called the
functor and a list of arguments: [which can
be any terms -- constants, variables,
structures, nested structures, etc.!]

rainy(arcata)

teaches(tuttle, cs335)

bin_tree(foo, bin_tree(bar,arc))

! We use the term "predicate" to refer to the
combination of a functor and an "arity"
(number of arguments).

" The predicate rainy has arity 1.

" The predicate teaches has arity 2."

Prolog - reminders, p. 3
[source: Scott, Ch. 11, pp. 547-548]

! A Prolog database contains facts and rules;

! A fact is a Horn clause with no RHS:

rainy(arcata).

! A rule has a RHS: (read a comma as "and")

snowy(X) :- rainy(X), cold(X).

! Variables that appear in the head of a Horn
clause are universally quantified:

" for all X, X is snowy if X is rainy and X is
cold.

! A query or goal, a clause with an empty
LHS, does not go in a knowledge base, but is
given to the Prolog interpreter or compiled
program to try to prove.

Prolog - Boolean operators
[source: no-longer-available tutorial:
http://www.cse.msu.edu/~cse440/Programming1/programming1
tut.html]

! use a comma [,] for boolean AND

! use a semicolon [;] for boolean OR

! use backslash and plus [\+] for boolean NOT

! (and parentheses for grouping ARE permitted)

= and == in Prolog
! In a Prolog rule, = means "unified with"

" we see that in swipl's responses to our queries;

?- likes(A, pie).
A = eve ; /* corrected after class */
false.
! If you'd like to ask -- say, in a rule -- whether two variables

happen to be unified to the same value, you can use == for
that:

?- likes(A, eve), A == al. /* corrected*/
A = al ;
false
/* DIDN'T unify A with eve */

