
Prolog - a little more history, 1
[source: Webber, "Modern Programming
Languages", pp. 544-546 - "The Story of
Prolog"]

! We mentioned this previously: "Prolog arose
from work on automated theorem proving"

! 1965: "Alan Robinson published a paper
introducing the idea of theorem proving
based on resolution" <-- "...the foundation
of Prolog"!

" led to much work "around the world on
resolution-based theorem-proving";

" BUT -- there are MANY "possible
algorithms for automated inference based
on [this idea of] resolution, with widely
varying degrees of power and efficiency"
-- "...Prolog did not arise immediately";

Prolog - a little more history, 2
[source: Webber, "Modern Programming
Languages", pp. 544-546]

! "Several researchers saw the connection
between automated inference and general
computation,

" and observed that the behavior of theorem
provers could parallel the behavior of
programming language interpreters."

! But, they tried to get these "theorem provers
to prove impressively difficult things"

" rather than on "the simple computational
things that Fortran and Lisp could already
do" [we're in the mid- to late-1960's now, I
think]

Prolog - a little more history, 3
[source: Webber, "Modern Programming
Languages", pp. 544-546]

! 1971 - Alain Colmerauer's group - Universite
d'Aix Marseilles

" "working on an artificial intelligence [AI]
project:"

" "a system to answer questions about
natural language texts"

! This system needed automated deduction:

" e.g., "if the text said that Jerry is a mouse,

" and that mice eat cheese,

" the system needed to answer the question,
does Jerry eat cheese?"

! They were using a resolution-based
technique for the automated deduction part;

Prolog - a little more history, 4
[source: Webber, "Modern Programming
Languages", pp. 544-546]

! 1971 - Alain Colmerauer's group - Universite
d'Aix Marseilles - continued

! They invited Robert Kowalski -- University
of Edinburgh -- to visit, and he explained
his resolution theorem prover

" Kowalski's technique: SL-Resolution

" "Philippe Roussel implemented a
simplified version of SL-Resolution for
the first Prolog system in 1972."

! "The name Prolog was suggested by
Roussel's wife, as a derivation of
programmation en logique (and we've
already seen that at least some English-
language references give this in English,
"programming in logic")

Prolog - a little more history, 5
[source: Webber, "Modern Programming
Languages", pp. 544-546]

! "Colmerauer and Roussel found that the
system could be used for their entire
application, not just for the deductive part;"

" "It was a general-purpose programming
language."

" "the 1973 version looked much like
modern Prolog." [!]

! Early versions were interpreted, "and were
extremely slow and memory intensive";

" "In 1977, David Warren at Edinburgh
developed the first Prolog compiler"

" "In 1983, he developed an important
compilation technique for Prolog: the
Warren Abstract Machine"

Warren Abstract Machine
[sources: Webber, "Modern Programming Languages", pp. 544-546, &
http://en.wikipedia.org/wiki/Warren_abstract_machine]

! [Webber] The Warren Abstract Machine is "an intermediate-code target for
Prolog compilation which is still used in some form by many Prolog
compilers (including SWI-Prolog)."

! [Wikipedia] "The purpose of compiling Prolog code to the more low-level
WAM code is to make subsequent interpretation ... more efficient"

" "reasonably easy to translate to WAM instructions which can be more
efficiently interpreted"

" (what other language does this remind you of?)

" can read more about the WAM in an MIT Press tutorial available on-line,
"Warren's Abstract Machine", by Hassan Ait-Kaci:
www.cvc.uab.es/shared/teach/a25002/WAMBOOK.PDF

Prolog - a little more history, 6
[sources: Webber, "Modern Programming Languages", pp. 544-
546]

! "The availability of compiled implementations,

" and the commercial success of various expert systems
implemented in Prolog,

" helped Prolog find a wider audience in the 1980's."

! "It remains an important language for artificial intelligence
development"

Prolog - a little more history, 7
[sources: Webber, "Modern Programming Languages", pp. 544-
546]

! "Like Lisp and Smalltalk, Prolog is a language that follows
naturally from a small set of basic elements --- in Prolog's
case, resolution-based-inference."

! quote from Colmerauer and Roussel:

" "Prolog is so simple that one has the sense that sooner or
later someone had to discover it."

! "Certainly, the connection between theorem-proving and
programming occurred to several researcher before Prolog
was born;"

Prolog - a little more history, 8
[source: Webber, pp. 544-546]

! Prolog's success "is due to an important
insight about how to make the connection
practical."

! In resolution-based theorem proving, it is
"easy it is to come up with a correct but
useless variant:

" a theorem prover that wanders around
proving exponentially many true things,
but none to the point."

! "The difficult thing is to find [such] an
algorithm ... general enough to be the basis
of a programming language ... yet can be
implemented efficiently enough to be
[practical]."

! "[Amongst] logic languages ... Prolog is still
the most successful."

arithmetic in Prolog: the is operator - 1
[source: Clocksin and Mellish, "Programming in Prolog", pp.
33-35]

! "The is operator is an infix operator,

which takes an unknown ... on the left,

and an arithmetic expression on the right."

! consider:

density(Place, Density) :-
 pop(Place, Pop),
 area(Place, Area),
 Density is Pop/Area.

! beware -- is float division in swipl, but not in ALL Prologs!

the is operator, continued - 2
[source: Clocksin and Mellish, "Programming in Prolog", pp.
33-35]

density(Place, Density) :-
 pop(Place, Pop),
 area(Place, Area),
 Density is Pop/Area.

! In the above example, Density is unknown when the is is
encountered,

" and it is up to the is to evaluate the expression,

" and let Density stand for the value."

! "This means that the values of all of the variables on the
right of an is must be known."

why do we need is? - 4
[source: Clocksin and Mellish, pp. 33-35]

! "We need the is operator ... to tell Prolog to
evaluate the arithmetic expression."

" "...[to Prolog,] something like Pop/Area
... is just an ordinary Prolog structure like

author(emily, bronte).

! "With arithmetic expressions, there is a
special operation that can be applied ...: that
of actually carrying out the ... arithmetic"

" "This is called evaluating the arithmetic
expression."

! "Clearly we cannot evaluate structures such
as the author one..."

! "So, we have to tell Prolog when we want it
to attempt to evaluate a structure."

! "This is what the predicate is is for."

Prolog arithmetic and
comparison operators

[source: Clocksin & Mellish, pp. 33-35]

! "Depending on what computer you use,
various arithmetic operators can be used on
the RHS of the is operator."

! "All Prolog systems, however, will have:"

X + Y /* the sum of X and Y */
X - Y /* the difference of X and Y */
X * Y /* the product of X and Y */
X / Y /* the quotient of X and Y */
X mod Y /* the remainder of X divided

 by Y */

! also has comparison operators -- only one of
which is a surprise!

< > =< >=

(yes, that really IS =< instead of <= ...!)

List basics
[source: no-longer-available tutorial:
http://www.cse.msu.edu/~cse440/Programming1/programming1
tut.html]

! a very common data structure in Prolog: the list

! basic list syntax:

" start and end with square brackets

" elements within are separated by commas

" example of a list: [a, freddie, 13.7]
! the empty list: []

Splitting a list: head and tail!
[source: no-longer-available tutorial:
http://www.cse.msu.edu/~cse440/Programming
1/programming1tut.html]

! "Prolog ...has a special facility to split the
first part of the list (called the head) away
from the rest of the list (known as the tail). "

" Yes, it's car and cdr, again...! 8-)

! "We can place a special symbol |
(pronounced 'bar') in the list to distinguish
between the first item in the list and the
remaining list."

[first, second, third] = [A|B].
A = first
B = [second, third].

[First|Rest] = [1, 2, 3, 4, 5].
First = 1,
Rest = [2, 3, 4, 5].

