
symbol table
(source: Louden, Ch. 5, pp. 128-129)

! "bindings must be MAINTAINED by a
translator so that appropriate meanings are
given to names during translation and
execution."

! "A translator does this by creating a data
structure to maintain this [binding]
information."

! This data structure is usually called the
symbol table

! So, a symbol table can be thought of as
mapping names to attributes...

object lifetimes
(source: Scott, Ch. 3, p. 115)

! "The period of time between the creation and
the destruction of a name-to-object binding is
called the binding's lifetime."

! "the time between the creation & destruction
of an object is the object's lifetime."

! "These need not necessarily coincide" --

" "an object may retain its value and the
potential to be accessed even when a given
name can no longer be used to access it"

" e.g., a pass-by-reference parameter -- "the
binding between the parameter name and
the variable that was passed has a lifetime
shorter than the variable itself"

" usually a bug if "a name-to-object binding
has a lifetime longer than that of the
object" (dangling references, anyone?)

storage allocation mechanisms
(source: Scott, Ch. 3, p. 115)
! "Object lifetimes generally correspond to one

of three principal storage allocation
mechanisms, used to manage the object's
space:

1. Static objects are given an absolute address
that is retained throughout the program's
execution.

2. Stack objects are allocated and deallocated
in last-in, first-out order, usually in
conjunction with subroutine calls and returns.

3. Heap objects may be allocated and
deallocated at arbitrary times. They require a
more general (and expensive) storage
management algorithm."

storage allocation: heap
! (Louden, p. 164) "the environment must have

an area in memory from which memory can
be allocated ... and ... returned in response..."
to run-time allocation requests;

! "Such an area is traditionally called a heap
(although it has nothing to do with the heap
data structure)"

! Allocation using this heap is usually called
dynamic allocation

" (...even though allocation of local
variables is also dynamic, in the sense that
it actually occurs during execution;

" ...but those local variables are allocated
using a stack, and memory allocated in this
way is usually called stack-based or
automatic allocation)

where are these in memory?
! (Louden, p. 164) NOTE that the "automatic

allocation" stack and the "dynamic
allocation" heap are usually DIFFERENT
sections of memory;

! ...and that first storage mechanism we
mentioned, for static objects , are usually in a
separate, static area;

! These three areas could be anywhere!

" BUT one common strategy is to place
them "adjacent to one another,

" with the global area first,

" the stack next,

" and the heap last,

" with the heap and stack growing in
opposite directions"

how can heap storage be
reclaimed? p. 1

[source: Wikipedia,
http://en.wikipedia.org/wiki/Garbage_collection
_(computer_science)]

! "Many computer languages require garbage
collection, either as part of the language
specification (e.g. Java, C#, and most
scripting languages) or effectively for
practical implementation (e.g. formal
languages like lambda calculus); these are
said to be garbage-collected languages."

! "Other languages were designed for use with
manual memory management (e.g., C, C++)

" but this Wikipedia article mentioned that
there are garbage collected
implementations of even C and C++...!

how can heap storage be
reclaimed? p. 2

! "Some languages, like Modula-3, allow both
garbage collection and manual memory
management to co-exist in the same
application by using separate heaps for
collected and manually managed objects"

! And there are even languages, "like D, which
is garbage-collected but allows the user to
manually delete objects and also entirely
disable garbage collection when speed is
required."

" Perhaps similarly, Louden notes that Ada
will let you call the garbage collector, or
turn it off for certain variables?

" (because of its goal to be usable in real-
time situations where control of the speed
of execution of a program is critical ---
Louden, p. 179)

reference counts (p. 1)
[source: MacLennan, Ch. 11, pp. 388-394]

! when something points to a cell -- increment its reference
count;

! when a reference to a cell is destroyed -- decrement its
reference count;

! ..."When a cell's reference count becomes ZERO, it means
that the cell is inaccessible and can be returned to the free
list."

reference counts (p. 2)

! MacLennan, p. 391: (pseudocode!!!)

decrement (C):
reference_count(C) :=

 reference_count(C) - 1
if reference_count(C) = 0 then

decrement (C^.left);
decrement (C^.right);
return C to free-list;

 end if.

mark-sweep (p. 1)
[source: MacLennan, Ch. 11, pp. 388-394]

! in its simplest/most-naive form:

" in the mark phase, the gc identifies all cells that ARE
accessible, that are NOT garbage;

" in the sweep phase, all of the cells that are left (and
inaccessible) are made available, "often by placing them
on the free list"

mark-sweep (p. 2)
mark phase:

for each root R, mark (R).

mark (R):

if R is not marked, then:

set mark bit of R;

mark (R^.left);

mark (R^.right);

endif.

